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Figure 1. Explosion at Test Site 
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PREFACE 

Nitrate of Ammon1a a •• is in many ways an ideal body for an explosive, 

for not only is it resolved completely into gases on detonation, but 

these gases ••• contain free oxygen •••• It is, however, very hygro­

scopic and this has stood in the way of its more general employment. 

Means have been found to overcome this difficulty, and I am prepared to 

prophesy that we shall hear a great deal more of it in the future. 

William CUllen, LL.D. 

1n his Presidential Address 

~odcrn Mining Explosives" 

at the 39th Sess1on of the 

Institution of M1ning and 

Metallurgy (England), London, 

Oct. 17, 1929. 
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INTRODUCTION 

Ar.monium nitrate as a source of explosive energy, only a labora­

tory curiosity for a long time, has for the last fifty years undergone 

considerable development. It has advanced to a position where it now 

accounts for the greater part of the energy used in commercial blasting. 

The discovery of nitroglycerine by Ascanio Sobrero in 1846 at 

that time did not seem too significant, as this substance ~s too 

dangerous to handle to pro~ote ample use as an explosive. Only when 

in 1866 Alfred Nobel mixed nitroglycerine with diato~aceous earth 

(kieselguhr) and thus ~ade the first dynamite, a comparatively safe 

explos1ve ~s introduced which soon should originate or revolutionize 

whole industries. While an excellent absorbent, kieselguhr is also a 

heat absorb1ng ingredient. So Nobel's next important invention intro­

duced an "active" dynamite absorbent in place of kieselguhr. This 

invention led to the development of the straight dynacdtes which are 

still important commercial explosives. Present straight dynarndtes 

contain woodpulp or wood flour as absorptive ingredients. 

As early as 1867, the same year in which Nobel obta1ned his 

English patent for dynamite, a Swedish patent was issued to Ohlsson 

and Norrbein for an explosive ~xture called ammoniakkrutl consisting 

of ammonium nitrate either alone or in mdxtures with charcoal, sa~uust, 

naphtalene, picric acid, nitroglycerine or nitrobenzene. Nobel acquired 

this patent and soon presented his series of ammonium nitrate explosives 

which he called extra dynamites. When safety regulations in coal mines, 

lAll references are in the bibliography. 
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where easily explosible methane and coal dust represent considerable 

safety hazards in the usc of explosives, required an explosive with a 

low detonation temperature, another series of ammonium nitrate explo­

sives was introduced. Due to the low detonation temperature of ammonium 

nitrate the "permissible" explosives contain up to 951. ammonium nitrate 

and little or no nitroglycerine. This continued the trend toward the 

replacement of nitroglycerine by ammonium nitrate in commercial explo­

si vcs. An obstacle l-Ias the high hygroscopic! ty of ar..moniwn ni tratc. 

In 1885 R. S. Penniman presented "Protected Nitrate of Ammonia for Use 

in Explosive Compounds," (US Patent 312010), in which he introduced a 

ccating w1th petrolatum, which waterproofed the ammonium nitrate suffi­

ciently.2 Other important coatings include the calcium stearate coating, 

patented by Baker and Johnson in 1936, and the Cairns PRP--petroleum, 

rosin, petrolatum--coating for ammonium nitrate, patented in 1941 and 

1944. 3 

In 1912 a patent was granted to Norbert Caipek for "Safety Explo­

sives": "I have invented certain new and useful improvements in the 

manufacture of safety explosives of which the following is a specifi­

cation. An explosive mixture of 88~ of nitrate of ammonium, 6.251. of 

turmeric charcoal, and 5. 751. of sandal wood charcoal."4 So here an 

ammonium nitrate explosive was proposed which did not contain any nitro­

glycerine. However, further deTelopment had to wait another twenty 

years. In 1935 a patent was given to William Kirst and Clifford Wood­

burg, "Aim:lonium Nitrate Explosives": "The object of our invention is 

to provide explosiTes of increased safety because of their greatly 
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reduced degree of sensitiveness. A further object is such an explosive, 

containing arrmonium nitrate as the principal ingredient. A still further 

object is to provide oxplosives of the kind described that cannot be 

exploded by the ordinary blasting caps, but that can be used satisfacto­

rily in wany blasting operations when primed with an adeQUate booster 

charge of explosive. We prefer, however, to employ organic fuels as 

sensitizing agents. In such capacity, we may usc fuels containing 

oxygen, for example, glycol, glycerine and the like, aldchydrates, of 

which sugar, starch and cellulose are examples. We may usc also fuels 

containing no oxygen, and consisting of carbon or compounds of carbon 

and hydrogen. As examples of satisfactory fuels of this class, we may 

cite various for.ms of carbon, hydrocarbon, and the like. We prefer, 

howeTer, to use coal as fuel with ammonium nitrate. We find a satis­

factory composition to result when the relative proportions are selected 

of 921,-95~ammonium nitrate and 5--8 parts of coal."4 This develop­

ment led to the production of DuPont's blasting agent "Nitramon" in 

1935. This product is packed in tightly sealed metal cans to proTide 

for unlimited water resistance and contains no nitroglycerine whatever. 

It cannot be detonated by the strongest of commercial blasting caps, 

detonating cord, flame, shock, frict1on, or impact, and thus proTides 

ultimate safety. Its blasting strength is deTeloped by the use of 

special primers containing TNT. 

Late in 1952 Messrs. lmgh B. Lee and Robert Akrc of Maumee 

Collieries Company began testing a new reethod of blasting with an 

ammonium nitrate explosive. This explosive consisted of common 
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ammonium nitrate fertilizer to which a small percentage of hydrocarbon 

had been added. The explosibility of such a mixture had become known 

more publicly when oil from broken ship fuel lines mdxed with an ammo-

nium nitrate cargo and initiated by a fire led to the Texas City Dis­

aster in April 1947.5 After more than two years of developnent uork 

this new blasting method was ready to be patented and be~e known as 

the "Akremi tc" method. The patent was granted in 1955 to Hugh B. Lee 

4 

and Robert N. Akre and assigned to the YAumee Collieries Company, Terre 

Haute, Indiana, for "Blasting Process": "Ammonium nitrate is less 

effective as a blasting explosive when not crarged into the drill holes 

in such ma.nner that air spaces are eliminated as far as possible. Any 

type of waterproof flexible material of sufficient strength to avoid 

breaking or rupturing can be used to construct the bags, such as poly-

ethylene or Pliofilm. vlhen the bags are dropped into a drill hole they 

expand and defor.m when they hit bottom and fill the entire hole, !eaTing 

substantially no air spaces between the bags and the wall of the bore. 

Thus the cushioning of the shock by air spaces is practically eliminated 

in our method."4 There were a n~ber of features which helped to adver-

tise this new development: 

Economy: ExplosiTe costs, which comprise the largest single 

supply cost item in strip mdning, were reduced by one third and 

more. 

Effect: The new explosiTe neTertheless provided good overburden 

fragmentation. A number of tests proved that the breaking effect 
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of Akremite has equalled that of more than twenty Tarieties of 

explosives on a pound for pound basis.6 

Safety: The materials are safe to handle. The Akremite ingre­

dients, ammonium nitrate and carbon black, and the mixture itself 

arc not caP-sensitive. This also proTides for a reduction in 

transportation costs, the highest rates being for commercial ex­

plosives. 

As oan be seen the Akrcmdte patent covers mainly the new theory 

of blasting, making use of an ammonium nitrate--carbon black mixture 

and the unique method of packaging the explosiTe in expansible poly­

ethylene bags which would snugly fill out the drill hole. As other 

mine operators (as consumers of ammonium nitrate) and manufacturers 

(as producers of ammonium nitrate) became. interested in the use of an 

5 

ammonium nitrate--non nitroglycerine--mixture as an explosive, organ­

ized research went under way to inTestigate different types of mixtures 

to obtain a mixture of optimum qualities. Scientifically only little 

was known about such mixtures. There were questions about their be­

haTior under modified conditions: how would, for instance, a change 

in particle size of the ammonium nitrate influence the explosive effect 

of the mixture; what would a change in the percentage of added fuel 

oil accomplish? 

It was the purpose of the investigation described herein to find 

the answers to some of the questions which arise with the use of an 

ammonium nitrate--non nitroglycerine--mixture as an explosiTe, such as 
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a) the effect of the percentage of fuel oil in the mixture 

b) the effect of the loading dens! ty of the mixture · 

c) the effect of the diameter of the charge 

d) the effect of the particle size of the ammonium nitrate 

e) the effect of different reducing fuels 

f) the effect of different primers. 
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REVIEW OF LITERAlURE 

The blasting method employing fertilizer grade ammonium nitrate 

( RlAH) mixtures as explosi vcs was deTeloped in the field. So it is 

only natural that the earliest reports about this blastinq method were 

drawn up by men connected with the field operations. In these reports 

more emphasis was placed upon the practical aspects of the method than 

on a scientific analysis of the basic relations in the use of such an 

explosiye. A large number of basic problems is still being investigated. 

Only a limited number of publications is available so far, which give 

infor.mation about the latest research results. While reviewing these 

reports it appeared useful to also consider some reports of earlier 

research on similar proble~ with ammonium nitrate. Finally a short 

reTiew is giycn on the methods of measuring the detonation velocity 

of explosi Yes. 

Reports from Field Operations 

For better comparison the significant data of the reports from 

field operations employing fertilizer grade ammonium nitrate (FGAN) 

explosive mdxtures haTe been collected and assembled in Table I. In 

respect of the mdned materials a wide Tariety is covered. Originating 

in the blastinq of overburden in cou strip mines the method ~oon was 

adopted in a number of iron ore mines of the Mesabi Range. Other 

mdning operations followed prompted by the reports of considerable 

saYings in blasting costs in the use of this new method. For better 
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TABLE I OPEN PIT OPERATIOnS ~'tPLOYING Al-11 iONIUM NITRATE EXPLOSIVES 

Author Operation Mater1al Diameter of Explosive Primer Remarks 
Blasted Drillhole Mixture Used 

( Cananea Disseminated 9" 100 lbs FGAN 100 lbs 6~ Fragmentation 
Sonora, Copper ore + lt gal fuel oil Quarry Gel + better than with 
Mexico Oil poured into Primacord 60~ gelatine 

bag (300 lbs of dynamite alone 
mixture per hole) 

Jackpile Sandstone 6 3/4" 80 lbs FGAN + 3/4 Free running 
Mine, overburden 7 7/8" gal fuel oil, 40'/. dynamite 
Laguna Oil poured into in decks, each 
Indian Res., bag 24 hours before deck with 
New Mexico using mixture separate prima-

cord 

Berkeley Disseminated 9'' 80 lbs FGAN + Si lb can 
Pit, Butte, copper ore 6 1/4" 1 gal fuel 011, "Nitramite" + 
Montana Oil poured into Primacord 

baq 

4 Yerington Porphyry 7 3/8" 8 0 lbs FGAll + Hercules XC-49 
Mine (1958 )1 copper ore 1 gal fuel oil + Primacord 
Weed Heighte1 Oil poured into 
Nevada bag 

35 Yerinqton Porphyry 7 3/8" - 130 lbs FGAN Special 6 rt/. 
Mine (1956 ), copper ore 8" + 50 lbs 401. qelatin (25 lbs) 
Weed Heights, Ml-Dynami te + Prirr.acord 
Nevada ( FGAN poured 

around colwnn of 
dynamite) 
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Author 

36 

37 

ll 

. 38 

6 

Operation Material 
Blasted 

Yerington Porphyry 
Mlne (1956)1 copper ore 
vleed Heights, 
NeTada 

~cintyre Ilneni te and 
DeYelopmcn~magnetite 
Tahawus, 
New York 

I~wkins Taconite 
t-ane 
(Mesabi 
Range), 
Z.Iinnesota 

l~wkins Taconite 
1-Iine 
!esabi 

Range 
Minnesota 

MAwuee 
No. 20 + 
No. 27 
Indiana 

OTerburden 

TABLE 

Diameter of 
Drillhole 

7 3/8" 
- 8" 

9'' 
6 1/2" 

6" 
9" 

I CONTINUED 

Explosive Primer 
z.axture Used 

175 lbs FGAN + Special 60~ 
1 gal fuel oil, gelatin (25 lbs) 
·~-1 gal tuel oil + Primacord 
poured in each 
80 lb bag 

Canned high Canned high 
explosives, "Nitro- explosives 
C4rbo-Ni trates'' 
+ 80 lbs FGAJl 

ao.lbs FGAN + 
3t qts fuel oil 
poured into hole 
simultaneously 

80 lbs FGAN + 
1 gal fuel oil 

Akremi te 9" x 27" 
cartridges 

7" X 24" 
special primer 

Extra dynamite 
AL-4 (20 lbs in 
polyethylene hag) 
+ fuse + No. 6 
regular detonators 
(delay type) 

9 

Remarks 

R;All comprises 
only 26~ (weight) 
of total charge 
per hole 
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TABLE I COUTilruED 

Author Operation Material Diameter of ExplosiTe Primer RerMrks 
Blasted Drillhole Mixture Used 

39 Maumee OYer burden: 10 S/8" Akremi te 9" x 27" Extra dynam.i tc Deck charges are 
No. 20 + sandstone cartridges in poly- + Primacord common practice, 
No. 27 hard shales ethylene bags separate primers 
Indiana limestone used for each 

deck 

7 Colonial Overburden: 6" Akremitc cartridges: 60~ gelatin Successful in 
Mine hard abrasive 7 1/2" 5" x 32" (20 lb8) dynami tc horizontal holes 
Kentucky sandstone 10 5/8" 6~'x 34• (33 1/3 lbs)(l2~ lbs) + also 

sandy shale 9" x 26~ (50 lbs) detonating 
limestone fuse + cap 

10 Empire Overburden : 7 3/8" Akremite 5"xl3" primer 
No. 6 blue shales vertical, of 751. gelatin 
Mine hard sandy 6 1/2" (12i lbs) 
Walker shales hori-
County zontal 
Alabama 

40 Robbins Overburden : 9" Akremitc No trouble with 
Mine hard sand- as much as two 
Oneonta stone feet of water in 

labama hard and the holes 
soft shales 

9 Calcite Limestone 7 7/8" 100 lbs FGAN-1- 1-Uxi ng is done 
plant. 9 7/8" 8 lbs fuel oil by epecial 
Rogers 10 5/8" thoroughly mdxcd machine 
City 12 1/4" 
Michigan 
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TADLE I CONTINUED 

Author Operation Material Diameter of Explotsive Primer Remarks 
Blasted Drillhole Mixture Used . 

9 Cedarville Dolomite 6 1/~" Commercially 
Quarry 7 7/8" compounded AN-
U. P. mixture 
Michigan 

41 Benson l·laqneti te 9" 100 lbs FGAN Canned agent Diffi ulties with 
lino Martite + 1 gal fuel oil "Nitramitc" wet holes 

New York Oil poured into 
bag 

M. A. Hanna. 9" 95~ FGAN + Seed-gelatin 
Company 5~ carbonacco\18 powder 
Open pits, material in SO lb 
Meeabi Range polyethylene bags 
l-1iMcsota. 
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effect a number of operators employed deck charges. This means that the 

load column of ammonium nitrate in the hole is interrupted by charges 

("decks•) of higher strength explosiTes to proTide a booster effect. 

Sometimes each deCk has a separate primer. The fragmentation obtained 

was in general satisfactory if not better than with the use of explo­

siYes used prior to the adoption of ammonium nitrate mdxtures. 

The Akremdte mixture (see statement of patent on paQe 4) requires 

a thorough mdxing of the components of the explosive, ammonium nitrate 

and carbon black, as the latter is too Tiscous to effect an even distri­

bution by itself. The mixing apparatus is described in detail by ~ner. 7 

When fuel oil is used as sensitizer, it in general seems to be assumed 

that the pouring of the fuel oil into the bag of the ammoniu~ nitrate 

proTides for a sufficient intimacy of mdxing. This ass~tion is sup­

ported by Cook. 8 · An experiment is described in which eighty pounds of 

prilled ammonium nitrate were poured into a nine inch diameter tube and 

then fiTe pounds of No. 2 fuel oil were poured on top of the ammonium 

nitrate column. Samples of the ammonium nitrate--fuel oil mdxture, 

taken at the top, in the mdddle, and at the bottom of the column ten 

minutes later, showed that the oil had penetrated the entire column and 

had became unifor.mly enough distributed that none of the samples showed 

more than fiYe percent variation from the mean in the oil analysis. 

Still, the occasional appearance of brown or yellow nitrous oxide 

smokes after firing9 showed that parts of the ammonium nitrate burned 

rather than detonated, although the amount of added fuel oil should 

rather proTide for an oxygen negatiTe explosion. HoweTer, due to the 
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excellent fragmentation results it apparently did not seem worth the 

expenditure to facilitate a more balanced explosion through the prepa-

ration of a more intimate mixture. Only in one report a more thorouQh 

mdxing is considered of importance. 9 A special machin~ was designed 

which provides a finely diYided fuel oil spray to be injected into the 

running ammoniwn ni tratc while it is poured into the hole. The proper 

percentage mdx of ammonium nitrate and fuel oil is assured by the use 

of a flow control meter for the nitrate and an adjustable nozzle mecha-

nism for the fuel oil spray. 

Wet or moist holes remain a major problem. 10 Sall describes how 

the Akrcmite polyethylene bags, although within limdts waterproof as 

long as they do not tear, cause difficulty by tending to float atop the 

water in the hole. Following dropped bags then plug up the hole aboYc 

the water level. 11 A similar difficulty was encountered by Grant in 

the use of ammonium nitrate mixtures in waterproof metal containers. 

This led to experiments to increase the density of the explosive mdxture 

to make it sink in water. The adding of ferrosilicon to the a.mmoniwn 

nitrate for this purpose was soon dropped when it was found that this 

caused too great a reduction in the blasting force of the mdxture. The 

mdxing of 15~ grain size ammonium nitrate with 85~ prilled ammonium 

nitrate increased the density sufficiently and also showed satisfactory 

results, although there was again a slight reduction in blasting force. 

It is the expressed opinion in a number of reports that ammonium nitrate 

explosiTe mixtures would find a considerably wider field of application 

should the manufacturing industry be able to provide a waterproof 
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ammoniwn nitrate. A step in this direction has been taken by Farnum 

3 and Cook with the development of some slurry explosives for use in 

large diameter underwater blasting. Mlxtures of ammonium nitrate, 

trinitrotoluene (TNT) and as much as 27~watcr haTe been employed 

14 

successfully. Due to the heat loss in the Taporization of these large 

percentages of water, the explosion temperature of the slurries is 

lower than that of corresponding (equal AN/TNT ratio) dry mixtures. 

However, due to the higher density of the slurries their explosion 

pressure and therefore their work potential is considerably higher. 

Reports fro3 Research 

It was the object of early investigations to determine the explo-

sibility of ammonium nitrate as related to a number of factors. Based 

on the experienced insensitivity of ammonium nitrate toward mechanical 

action such as impact, shock, and friction and toward the influence of 

2 12 heat, ' it was concluded that a correspondingly strong initiat1ng 

agent is required to cause its ex.plosiTe decomposition. The factors 

that influence the sensitiYencss of ammonium nitrate toward an initial 

impulse and thereby toward the ease with which an explosion may be 

brought about are density, fineness ( fonn and size of grains), and the 

effect of added materials. The influence of temperature on the sensi-

tiTeness to explosion was found rather negligible, as shown in 

Table II. 



www.manaraa.com

TABLE II 

Relation of Temperature to SensitiYeness to 

2 Explosion in Ammonium Nitrate 

Temperature 
of Nitrate 

Degree F 

69.8 
122 
122 
158 
198.5 
198.5 
198.5 

Nwnber of 
Detonators 

Fired in 
Charge 

8 
5 
6 
5 
1 
2 
3 

Result 

No Detonation 
No Detonation 

Partial Detonation 
Partial Detonation 

No Detonation 
No Detonation 
Detonation 

Compression 
of Lead Block 

Inches 

None 
None 
I~ one 
None 
None 
None 
5/16 

15 

Description of test: Two-pound charges of fine grained ammonium nitrate 
in tin cans were heated in a paraffin bath to the desired tempera­
ture. Can and contents were then placed on a lead block, 4 inches 
high .. and 2i inches in dia~tetcr, and detonated by one or more No ~ 8 
electric detonators imbedded in the ammonium nitrate. After explo­
sion the effect on the lead block was measured. 
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Initiating Agents (Primers). Early tests on the sensitiveness 

of ammonium nitrate to detonation by blasting gelatine are described in 

Table III. Sherrick13 graded various high explosives in respect of 

their efficacy as boosters for ammonium nitrate in this order: high 

content ammonium nitrate explosive (9~ nitroglycerine), picric acid, 

tetryl, trinitrotoluene, 60~ gelatine dynamdte, 40~ammonia dynamdte, 

amatol 80/20; the high content ammonium nitrate explosive being the 

most efficient and the ~atol 80/20 being the least efficient. 

Field practices and tests with ammonium nitrate--fuel oil mdx-

tures indicated that 60~ strength dynamdte or equivalent is satisfactory 

14 for an initiating charge. A primer of 40~ strength dynamite was con-

sidered a mdnimum. In experiments with Tery small primers it was found 

that in some instances there were complete failures, while in others 

detonations were of very low order, with Telocities about one fifth of 

nor.mal. This was considered as an indication of incomplete or partial 

15 detonation resulting from borderline primdng. It is stated that a 

decrease in blast hole diameter requires an increase in the load per-

centage of the detonating explosiTe. Field tests haTe shown that the 

percentage of the initiating explosiTe of about fiTe percent of the 

total charge for holes of a diameter of seTen inches and larger has to 

be increased to 25~ for holes with a diameter of two to four inches. 

In these tests it has also been found that priming was more effectiTe 

with a series of smaller charges than with one bigger charge. 14 The 

degree of confinement of the charge and the composition of the ammonium 

nitrate--fuel oil mixture arc also considered factors of lnfluence in 

8 14 the determination of a minimum booster. ' 
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Weight 
of AN 
Grams 

400 
400 
400 
400 

TABLE III 

SensitiTeness of Ammonium Nitrate to Detonation 

by Blasting Gelatine2 

Weight of 
Blasting 
Gelatine 

Grams 

100 
75 
so 
25 

Result 

Detonation 
Detonation 
Detonation 

No Detonation 

Compression 
of Lead Block 

Inches 

5/8 
1/2 
1/2 
None 

17 

Description of test: Ammonium nitrate in beaker was placed on lead 
block, 4 inches high and 2i inches in diameter, and then detonated 
by imbedded charge of blasting gelatine with primacord and cap. 
After explosion the effect on lead block was measured. 
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Density and Particle Size. It was concluded from earlier density 

tests that the probability of initiating a detonation in ammonium nitrate 

decreased with an increase in its density. 16 In the same way as with 

blasting gelatine a content of air bubbles furthers the ease of deto-

nation, so the air content of low density coarse grained ammonium nitrate . 

seemed to facilitate the initiation, while ammonium nitrate of the 

highest possible density, ~uch as is obtained b¥ fusing and solidifying 

12 the salt, could not be detonated at all. However, it was found that 

the blasting effect of ammonium nitrate decreased materially if the 

coarser grains lowered the density too much. 

Later research found that, 1f the initial detonation was pro-

duced, the particle size distribution rather than the aTerage particle 

size was the important factor. In tests carried out with ammonium 

picrate,17 the finest materials studied (all particles smaller than 

44 ttdcrons) had a detonation rate approximately equal to the theoretical 

one. The admixture of a small percentage of coarse material, which 

caused only a slight change in the aTerage particle size, produced a 

marked lowering of the velocity of detonation. If the fine particles 

were completely replaced by coarse particles, the decrease of the deto-

nation velocity was greater and it was more pronounced the greater the 

size of the particles. 

These results could be explained bf means of Eyring's grain­

burning theory.l8 "In the short time during which the explosive grain 

is exposed to the high detonation tc~perature (a microsecond or less) 

the heat is unable to penetrate deeper than the surface layers of the 
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grains. Consequently each grain of explosiYe begins reacting at its hot 

surface, and the reaction progresses layer by layer until it reaches the 

center of the grain. The reaction of each grain within the reaction 

zone of a detonation is thus a sort of cigarette burning, in which one 

layer of molecules is not ignited until the previous layer is consumed. 

This grain-burning theory is supported by the impossibility of heat con­

duction through a grain and the experimentally observed effect of the 

grain radius on the reaction time." 

Based on this theory it was ~hown for seTeral explosives how the 

length of the reaction zone is dependent upon the grain radius of the 

explosive substance. As the reaction zone length exerts a controlling 

influence on the stability of propagation and the velocity of the deto­

nation wave the importance of the control of the grain size of an 

explosive became man1fest. It was stated that a fine-grained explosive 

should always detonate stably while in a sufficiently coarse-grained 

explosive it might well be impossible to maintain a stable detonation 

waTe. 

In describing the effect of low density, mention was made of the 

importance to stability of detonation of the number of contact points 

one grain has to the surrounding grains. If by more loose packing the 

density of the explosiTe is lowered, so is then the number of contact 

points between grains. This will lengthen the reaction zone and will 

decrease the rate of detonation. In mdxing different particle sizes, 

small particles might fill the voids between larqer particles without 

increasing the number of contact points between grains. Thus, the 
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oYer-all density Ddght be increased without having an effect on the 

detonation rate, or certain proportions of different grain sizes mdxed 

will decrease the number of contact points and thus the detonation rate 

when the over-all density is kept constant. 18 

Research on ammonium nitrate--hydrocarbon mdxtures showed similar 

results. In ttdxtures with petroleum--resin--petrolatum the coarser 

ammonium nitrate was relatively less sensitive, sensitivity being defined 

as the relative ease of producing a detonation in the explosive mdxturc. 

The stability of detonat1on proved to correspond to the sensitivity in 

these tests: only the mixtures detonating with a relatively small 

primer, which were those containing fine-grained ammonium nitrate, 

showed satisfactory propagation of the detonation. All tests were 

carried out with 1 7/8 inch diameter charges. 19 

With the introduction of explosive mixtures composed of ferti-

lizer grade ammonium nitrate and fuel oil also a new grain for.m of 

ammonium nitrate was presented, the "prilled" ~~onium nitrate. The 

success of these explosive mixtures was partly credited to this grain 

for.m. It was the inherent structure of the prilled grain which proTed 

to be of great advantage. The porosity of the prill allowed the fuel 

oil to per.meate most of the particle and thus let the mixture proTide 

the effect of fine-grained nitrate intimately incorporated with the 

added fuel oil. T·is combined with the apparent low density as a 

result of the porosity made the prilled ammonium nitrate mixtures meet 

the requirements of two influencing factors: 14 a low density, generally 

of the order of 0.8 grams per cubic centimeter, which is important 
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because these mdxtures become less sensitive as the density is in­

creased,15 and more surface area which facilitates unifor.m penetration 

with the sensitizing fuel oil. 8 It was observed that the velocity of 

detonation was fifteen to twenty per cent higher in mdxtures with prilled 

ammonium nitrate than it was in mixtures with any other type of ammonium 

nitrate. Unit volume comparative tests showed that prilled ammonium 

nitrate, although weighing eighteen per cent less than the other types 

of nitrate solid, give equal blast performance, and in unit weight tests 

the prilled ammonium nitrate produced about twenty per cent more blast 

14 energy. 

Added Substances. Early investigations, originated after a 

number of disastrous explosions in plants for the production of ammonium 

nitrate on a large scale, proYed the effect of tmpurities or added 

substances on the explosibility of ammonium nitrate. 2 This research 

led to the expressed opinion that ammonium nitrate by itself should 

not be considered as an cxplosiYe. 20 Only the carbonaceous materials, 

used during the production to remove impurities and color or added to 

proYide a coating for better moisture resistance, would tend to sensi­

tize the ammonium nitrate. 21 Tests showed how relatiYely small per-

centages of carbonaceous material considerably increased the sensitiTe­

ness of ammonium nitrate to detonation. Russel Cook22 obserYed the 

maximum effect with an admixture of only one per cent petrolatum, in 

comparison to two per cent of petrolatum, one per cent of trinitro-

toluene, and one half per cent of trinitrotoluene. Results of other 

tests,19 this time with an admdxture of petroleum--resin--petrolatum (P.RP), 
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showed that a very sharp maximum sensitivity occurred at 0.75 per cent 

to 1.5 per cent P.RP content, while cocpositions with both 0 per cent and 

10 per cent P.RP content failed to detonate with the primer used, a 60 

per cent straight dynamdte cartridge, li inches in diameter and eight 

inches long. The sensitizing effect of the hydrocarbons was explained 

as follo~s: ammon!~~ nitrate contains twenty per cent more oxygen than 

is required for its complete co~hustion, that is, to oxidize the hydrogen 

to water, evolving nitrogen in the for.m of the Qaseous element. The 

introduction of materials containing carbon permits the for.mation of 

other gases, carbon monoxide or carbon dioxide, which are more easily 

for.med than free oxygen. The heat evolved in this reaction23 causes the 

sensitization of the ammonium nitrate. Consequently almost any number 

of carbonaceous or combustible materials could be used as an admdxture 

with ammoniuc nitrate to produce a satisfactory explosive.lS HoweTer, 

combustibles differ considerably in their effect upon the rate of deto-

nation and the net blast ene~ of the ammonium nitrate mdxture. The 

reason for this difference is the fuel value of the co~hustibles, that 

is, the amount of heat their combustion would produce, and their quality 

to proTide for an inti~ate mdxture with the grained ammonium nitrate. 

Materials most commonly used are finely diTided carbon black, pulverized 

coal, fuel oil, and Tarious combinations of these three. 

~lc in earlier tests an oxygen balanced composition of 94.6 

per cent ammonium nitrate and 5.4 per cent PRP proTed to be less sensi-
19 

tive than compositions with 0.75 per cent to 1.5 per cent PRP, recent 

tests with oxygen balanced mixtures of prilled ammonium nitrate and 



www.manaraa.com

23 

14 fuel oil gave the most satisfactory results, in respect to sensitiTity 

and in ter.ms of higher detonation Telocities and greater energy yield. 

Again the grain-burning theory18 could aid in the explanation of this 

phenomenon. In the earlier mdxtures only the surface of the single 

ammonium nitrate grain was coTered with the carbonaceous material, so 

that the combined reaction of nitrate and combustible could only take 

place on the outer layer but not in the following inner layers of the 

grain. On the other hand the porosity of the prilled ammonium nitrate 

grain presumably allowed a combined reaction also in the inner layers. 

Other factors of influence in sensitizing ammonium nitrate and 

its mdxtures were also inTestigated: 

Tne importance of confinement was early recognized. In a number 

of tests it was found impossible to cause unconfined ammonium nitrate 

at ordinary temperatures to detonate, but when confined it was detonated 

h¥ several of the initiators employed. The certainty with which deto­

nation could be effected increased with the degree of confinement. 16 

The effect of confinement on the propagation of detonation was explained 

by the following thought: since the explosiTe decomposition of ammonium . 

nitrate eTolves a positive quantity of heat, this reaction should be 

self-sustaining if the entire mass of the ammonium nitrate would be at 

such temperature that the heat loss from the system, by conduction and 

escape of heated gases, would be balanced by the heat eTolution. This 

13 is more likely to be realized in stronger conf~nement. 

Confinement was also found important in the use of ammonium 

nitrate--fuel oil mixtures. These mdxtures did not shoot reliably 
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unconfined, even with large primers. However, when confined in a bore­

hole with essentially no free space in th~ hole, the mixtures detonated 

regularly when properly stemmed and primcd. 15 This fact showed espe­

cially in the better performance of mixtures poured loosely into the 

borehole compared to the performance of mixtures loaded in metal con­

tainers. The loose mixture would fill much better irregular spaces in 

the hole. 

Tests were also made concerning the critical diameter. This is 

the mdnimum diameter for cylindrical charges, below which steady deto­

nation will not propagate. The critical diameter of dry ammonium 

nitrate is approximately nine inches. 3 Trial shots with a 94/6 mdxture 

of ammonium nitrate and fuel oil were made in boreholes drilled with 

a 1.5 inch bit, proTidinq a hole of approximately 1.7 inches in dia­

meter. The charges were found to propagate satisfactorily the entire 

length of six feet of the boreholes. The occasional discovery of un­

exploded mixture led to the conclusion that a diameter of 1.7 inches . 

was slightly below the true critical diameter for the mixture used, but 

that the strength of the'primer insured propagation oTer the length of 

six feet. 8 

Velocity of Detonation. The·ther.mo--hydrodynamdc theory of 

detonation permits the calculation of the equation of state of the 

products of detonation. However, only one of the factors of the equa­

tions of the theory, namely the detonation velocity D, can be measured 

experimentally, except for some limited pressure tests with Tery small 

amounts of explosive. By establishing the relations between the 
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detonation Tclocity and the equation of state, the ther.mo--hydrodynamdc 

theory provides for the determdnation of other pre-calculated detonation 

properties such as pressure and temperature by means of the measured 

detonation velocity. Due to these relations the detonation Telocity of 

an explosive has been an important characteristic to deter.mine the Talue 

of a substance as an explosive. This emphasizes the importance of 

velocity tests. 

Early velocity tests on ammonium nitrate carried out according 

to D'Autriche's method showed that the Telocity of detonation increased 

with increasing diameter of the test tube and decreased with increasing 

distance from the point of initiation and with increasing moisture con-

tent. The influence of the initiating agent was found to Tary only 

within moderate limdts and to correspond in general to the detonation 

Telocity of this initiating explosiye. The Telocity of detonation of · 

ammonium nitrate increased with increasing density of loading and also 

with increasing strength of confinement. The obserTed detonation Teloc-

ity of ammonium nitrate was about 8,200 feet per second; the diameter 

12 of the charge and the loading density were not recorded. 
# 

Detonation velocity tests on ammonium nitrate--fuel oil mixtures, 

detonated in five inch diameter charges in thin paper tubes, were de­

scribed by Cook; 8 Results of these tests are shown in Table IV. The 

compositions, densities, and aTerage Telocities are giTen together with 

the computed theoretical ideal velocities obtained through the appli-

3 cation of the calculation methods of the thermo--hydrodynamic theory. 

Similar results for fine-grained trinitrotoluene were listed for 
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TABLE IV 

Observed and Computed {Hydrodynamic) Velocities of Prilled 

Ammonium Nitrate-No. 2 Fuel Oil Mixtures 

26 

Composition 98/2 94/6 90/10 TNT­
Fine Grained 

Density {gjcm3) 0.8 o.8 0.8 0.8 

D 7218 8333 7841 14320 

n+ 12139 13780 13541 14320 

D = observed detonation velocity in feet per second, in s• diameter 

charges 

n+ = computed ideal detonation velocity in feet per second 
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comparison. Attention was called to the fact that the actual detonation 

Yelocities of the ammonium nitrate mixtures were much lower than their 

ideal detonation Telocities. 

Reference was made to an earlier pUblication, 24 in which the 

theory was deyeloped that the actual detonation yelocity of an explosiYe 

is dependent upon the fraction of completed reaction N that took place 

in the "detonation heacf', that is, the zone between the shock front and 

some critical layer in the detonation waTe which is known as the Chapnan­

Jouguet plane. It was assumed that at this plane the rarefaction of the 

detonation wave would be sufficient to interrupt the supply of chemdoal 

energy to the detonation wave and thus to discontinue the increase in 

detonation velocity. This critical plane would moye closer to the 

shock front if there were poorer confinement, owing to the influence 

of release waves from the sides. If this plane was sufficiently close 

to the end of the reaction zone, the explosive would be ideal (D = D*), 

but if it would appear considerably in front of the end of the reaction 

zone, the detonation would be non-ideal (D smaller than D*). It was 

shown as result of exper~ental eyidence how the lenQth of the deto­

nation head was dependent upon the diameter of the chArge, but not upon 

the lenqth of the reaction zone. In smaller diameter charges an explo­

sive with a long r~ction zone would therefore have a comparatiTely 

short detonation head, also! A' small fraction of completed reaction N 

within this head, and thus a low detonation Telocity. An increase in 

chaxve diameter would result in an increase in the length of the deto­

nation head until finally the Chapman-Jouguet plane would be sufficiently . 
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close to the end of the reaction zone that the fraction N of reaction 

completed would approach the Talue of 1.0 and the actual detonation 

velocity would approximate or equal the ideal detonation Yelocity of 

the explosive. 

%8 

Detonation Telocity tests in 10 5/8 inch diameter boreholes 

resulted in velocities of about 12,000 feet per second for ammonium 

nitrate--carbon black mdxtures, and 13,000 feet per second for ammonium 

nitrate--fuel oil mdxtures. In six inch diameter holes the velocities 

were 800 to 1000 feet per second lower. ~xtures in these larQe holes 

propagated at constant Tclocities over columns of at least thirty feet 

in length. 15 

Overdrive. The oTerdrive principle in the use of heavy prima­

cord fuse to detonate ammonium nitrate--fuel oil mixtures was postulated 

by Tikker. 25 It was claimed that a primer of heavy primacord running 

through the whole length of a charge of an ammonium nitrate--fuel oil 

mixture would cause the mixture to detonate at a higher effectiTe Te­

locity than its own characteristic Telocity due to a boosting or oTer­

driTe effect of the primacord. The blasting method on which the prin­

ciple was based employed one-foot long strips of hea.,y ( 400 qrains per 

foot) primacord connected to a primacord (50 grains per foot) trunk 

line which ran throuqh the whole length of the charge. InYestiqation 

showed that a one-foot length of hea"f}' ( 400 grains per foot) prima cord 

only inconsistently initiated a 94/6 ammonium nitrate--fuel oil mdxture, 

The conclusion was reached that the consecutiTe explosions of the h~vy 

primcord strips, which might or miqht not initiate the •urrounding 



www.manaraa.com

29 

~xture, accounted for the h1gh detonation velocity measured, while the 

detonat1on wave of the ammonium nitrate mixture travelled at it's own 

characteristic speed for short length propagatlon.8 In addition to these 

find1ngs one of the field reports described the blast initiated by means 

of the pr~er described above as completely unsatisfactory.ll 

Measurement of Detonation Velocity 

There are several methods in common use to measure detonation 

· velocities. They may be divided into two basic groups:- optical or photo­

graphic methods and chronographic methods.26 

The photographic methods have the advantage of providing a con­

tinous record of the detonat1on, so that changes in velocity and points 

of fluctuation are automat1cally registered. A number of disadvantages 

have been overcome. The photographlc technique was introduced by Mallard 

and LeChatelier in 1883, which employed a rotating drum camera. The 

principle is in general, that a film fixed to a rotating drum is moved 

at right angles to the direction in which the detonation propagates in 

the explosive cartridge. The light emitted from the detonation draws a 

line on the film at a slope to the direction of motion of the film. 

The slope of this line is a measure of the velocity of the detonation. 

The steeper the l1ne is on the film, the greater is the detonation 

velocity. In the earlier use of this method 1t was a serious difficulty 

that high-velocity explosives detonating with &pacious flames caused a 

lack of definition by draw1ng traces on the film, which were too wide. 

Clear lines could only be obtained by using narrow cartridges of great 
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length and placed well away from the camera. This led to the introduc­

tion of the "fine slit" technique by Jones in 1928. Thus, the field of 

view of the camera was restricted to a thin l1nc ("slit•) along the 

cartr1dge. The original rotating drum cameras had writing speeds up to 

about 500 feet per second. An increase in writing speed was achieved 

by successful application of the rotating-mdrror prlnciple.27,28 The 

instrumentation designed by Frazer29 in 1935 IUpposedly had writing 

speeds of up to 3300 feet per second. In th1s device a two-sided 

rotating mirror transferred the light from the detonation onto the film. 

Lmprovements in the mounting of this mirror made even higher writing 

speeds possible. The latest high-speed camera design employs an image 

converter tube, as described by Cburtney-Pratt30 1n 1949. 

The chronographic methods are based on the possibility of record­

ing the arrival of the detonation wave at two or more points of known 

distance apart in the explosive medium. It is the principle of the 

chronographic ~ethods to employ probes that are placed at fixed points 

on,or in the explosive. The pressure discontinuity or ionization present 

in the detonation wave then causes the external circuitry associated 

with the probes to produce a signal as the detonation wave reaches each 

probe in turn. The signals are sent to a mechanical or electronic 

recording instrument which also proTides the necessary time base. 

The spark chronograph designed by Mettegang in 1903 and tmproved 

by lAst in 1913 ~s the first standard chronograph1c deTice to measute 

detonation velocity.31 In the use of this instrument fine wires were 

threaded through a train of cartridges at various points of known 
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circuit of an 1nduction coil. The advancing detonation wave by 

breaking the wires caused a change of current in the primary circuit 
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and induced some current in the secondary circuit. The secondary circuit 

was interrupted by a spark gap, one of the electrodes being a soot covered 

drum rotated by a motor at constant speed. Each wire fracture therefore 

produced a spark which left a small mark on the drum. The time elapsed 

between the breaking of two wires could then be deter.mined by the dis­

tance between the two correspondinQ spark marks on the drum and the rate 

of rotation of the d~~. To prov1de for a reasonable accuracy of the 

measurements, however, the wires in the cartridges had to be separated 

by distances of two to seven feet, depending on the range of veloc1ty to 

be measured. This required a long file of explosive cartridges, and 

the result obtained represented an average value for a long column of 

cartridges rather than the value for a single cartridge. 

The method devised by D'Autriche in 1906 1s the simplest way to 

measure the detonation veloclty on shorter lengths of explosives, although 

the accuracy of this method does not satisfy all needs. It depends on 

the comp:trison of the unknown veloc1ty of an explosi'Ye with the known 

veloc1ty of another explosive, the latter in general being commercial 

primacord. This test is described by Taylor.26 

To receive a greater precis1on of measurement than can be obtained 

with the two methods mentioned, the application of the ncondenser-discharge• 

method was introduced. In this method the charge or discharge of a con­

denser through a resistance is started by one eYent and stopped by 
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another. The change in potential across the condenser is then a measure 

of the time between the two events. In a detonat1ng explosive the 

triggers ~Y be provided by the fracture of a wire (break system) or by . 
the ionization of the detonation wave which may render a small gap con-

duct1ng (cake system). The princlples of this method are applled in the 

chronoscope, descrlbed by Nlsewanger32 and Brown, and in ~Dst later 

designs of chrono9raphic instruments for the measurement of detonation 

velocit1es.33 
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EXPERIMEN~L 

Purpose of Investigation 

The purpose of the ~nvestigation described here~n was to find 

the answers to some of the quest1ons that arise in the use of ammon~un, 

n~trate-reducing fuel mixtures as explosives, such as 

a. the effect of the percentage of fuel o~l in the mixture 

b. the effect of the loading density of the mdxture 

c. the effect of the diameter of the charge 

d. the effect of the part~cle size of the ammonium nitrate 

e. the effect of d~ffcrent reduclng fuels, and 

f. the effect of d1ffcrent pr1mers. 

Plan of Experimentation 

The performance para~etcrs of an explos1ve, such as detonation 

pressure and temperature, detonat1on velocity, and the potential avail­

able work, may be calculated by means of the equations of the ther.mo­

hydrodynamdc theory. However, the detonation velocity 1s the only 

parameter which can be measured experlmentally and thus serve as a 

means to confir.m the calculated results. For this rearon the detonation 

velocity has been used emp1r1cally as the measure of the intensive 

property of an explosive. All 1nfluences on the performance of an 

explosive are judged by their effect on the detonation velocity, which 

has somewhat restricted application. To gain infor.mat1on expertmcntally 

on the effect of variables such as percentage of fuel oil, part1cle 
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size, loading density, or diameter of charge, on the performance of the 

explosive mixture, the1r effect on the detonation velocity of this mdxture 

was studied. Therefore it ~s the obJect of the experimentation to 

measure the detonat1on velocity of the explosive mdxtures while modifying 

the different variables. 

In preparation for tests to tteasure the detonation velocity of 

ammonium nitrate mdxtures, series of tests were made to study the ex­

plosibility of the mdxtures. These tests were carr1ed out without the 

instrumentation to measure the detonation veloctty, and although only 

of a qual1tat1ve nature, they provided valuable infor.cation for the later 

exper1ments. 

Apparatus and Materials 

The equ1pment for the explosibllity tests could be divided into 

two groups: ~x1ng equ1pment and blasting equi~ent. 

The mixing equipment 1ncluded all utensils necessary to provide 

for a thorough mixing of the components of the mdxture and to facilitate 

the loading of the mixture into the test p1pes. These 1ncluded a scale 

for the weiyhing of the ammonium nitrate, a graduated cyl1nder and a 

hygrometer to .deternune volume and density of liquids to be added, and 

several tubs, bowls and wooden spoons for the actual mtxing. 

The blasting equipment included all parts and instruments necessary 

to carry out the tests. 

The test pipes, which served as containers for the explosive 

mdxture, cons1sted of black iron p1pes. The pipe is completely destroyed 
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during a successful test. Except for the tests with varying diameter 

all tests were made with three-1nch di~~eter pipes. One end of the plpe 

was closed by a welded-on 1ron plate, the other end was sealed with a 

pipe cap. Each cap had a small hole ln the center for the wires of the 

electric blasting cap. 

Blasting cable, about three hundred feet in length, connected 

the wires of the electrlc cap and the electric blasting machine of the 

No. 10 hand-operated tw1st type. 

The detonat1on veloc1ty tests requ1red the additlon of a third 

group of equipment: the lnstrumentation for the measurement of detona­

tion velocity. 

The instrumentation employed for the measurement of the detonation 

velocity was an oscillograph connected w1th a p1n set-up. It was in 

general the instrumentation described by Pound,34 although some modifi­

cations of the p1n set-up were uade due to special conditions. 

The speclal pln-oscillograph system employed a modified Tektronix 

535 oscilloscope in connection with three addltional circu1ts. A tri­

anqular wave generator had the purpose of creating a •z1g-za~ raster 

type trace on the oscilloscope screen, which was considerably longer 

than a straight trace, and thus allowed for more accurate measurements. 

A marker generator supplied a t1me standard for the measurements, b¥ 

superimposing on the zig-zag trace small horizontal time calibration 

markers, at pre-determlned time intervals of two ~croseconds or 0.2 

microseconds. A pulse for.ming circuit, house~ in a plug-in box near 

the blasting site, changed the conduction between ground and the metal 
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pins in the detonating explosive to the proper amplitude and durat1on 

voltage pulse, so that 1t could appear on the oscilloscope trace as 

signals. These signals were d1splayed as horizontal p1ps and were of 

higher ~pl1tude and of longer duration than the time calibration markers. 

Therefore, they could be easily dist1ngu1shed. The oscilloscope had a 

f1ve-inch diameter cathode ray tube screen wh1ch was suitable for the 

mount1ng of oscillograph cameras. Thus, the oscilloscope trace could 

be recorded pho~ograph1cally (Figure 2). 

The total number of pins inserted 1n the explosive at known 

d1stances apart was eleven, the first pin be1ng the trigger pin. The 

iron pipe wall was used as a common ground. Each of the pins in the 

explosive and a screw in the p1pe ~11 were linked by a twenty-foot 

length of No. 24 enameled wire to a Cinch-Jones twelve prong connector 

whlch was connected to the plug-in box. When a pin was shorted to ground 

by the ion1zation in the detonation wave, the pipe wall serYing as 

ground lead, a signal voltage was produced across a load resistor in 

the plug-in box. This signal was d1fferentiated and sent through a 

co-axial cable, about 250 feet in length, to the signal cixcr box of 

the oscillograph systc~. The first p1n in the explosive was used as a 

tr1gger pin only, hence its cable went through the cdxer box and directly 

to the trigger input of the osc1lloscope. All the other co-axial cables 

were connected in parallel 1n the signal mdxing box and then went to 

the horizontal input of the oscilloscope (Figures 3 and 4). 

Following the initiation of the ' explos1ve rodxture the advancing 

ionized detonation wave contacted the tr1gger pin in the explosive, 
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Figure 2. Photographic Record of Oscilloscope Trace 
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which caused a voltage pulse to unblank the oscilloscope tube and to 

start one sweep. The progress1ng detonation wave then shorted to ground 

the other pins in successive order and thereby created s1gnals which 

appeared as pips on the oscilloscope trace. The distance between plns 

1n the explosive was kno~n. The time the detonation wave needed to 

travel from one pin to the next was shown by the d1stance between pins 

on the trace and could be crecked by the number of superiwposed tiu.e 

calibrat1on markers between the p1ps, each of the markers represent1ng 

two mdcroscconds 1n normal setting of the lnstr~~entation. Thus the 

detonat1on veloc1ty could be calculated easily. Occasionally one signal 

out of the ten ~~uld be lost due to a broken wire or a poor connect1on. 

By group1ng the pins in groups of two, three or four, the distance be­

tween groups being different from the d1stance between pins in a group, 

1t was possible to identlfy the miss1ng s1gnal and thus still be able 

to ut1lize the record of the experiment. 

In the orig1nal pin-set-up 1t was planned to 1nrert metal pins 

sheathed in an insulat1on of plastic tub1ng through properly spaced 

holes in the test pipe into the explos1vc. However, it was not possible 

to completely seal the plastlc tub1ng, and the conduct1vity of the 

hygroscopic a~n1um nitrate permitted a direct electrical short clrcuit 

between p1ns and pipe wall. To ellmdnate this possibil1ty and to 

facilitate a better sealing of the p1ns, the pins were inrcrted.into 

corks first, the corks then being plugged into appropriate holes in 

the pipe. But a trial run w1th a loaded pipe showed that the conductlv­

ity of the un-initiated a~n1um nitrate mdxture still caused too much 
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leakage between the pins and the plpe ~~11. To meet this problem each 

pin was substituted by a loop of enameled w1re sheathed 1n tlo. 18 plastic 

tubing and led through tha cork. Wh1le this wire now war insulated from 

the undetonated mdxture, the ionization and heat of the detonat1on wave 

would break the insulation 1n a fraction of a microsecond and then per-

mdt the necessary conduct1on. The ground wire was connected to the 

pipe wall with a brass screw near the end plate, so that the pipe ~11 

would remain grounded even when parts of it already has been blown off 

by the progressing detonat1on wave. 

The a~~n1um n1tratc employed in ~ost tests was a prilled fert1-

l1zer grade a~~n1um nitrate, wh1ch 1n general contained about three 

percent by weight of d1atomuteous earth as a coat1ng substance to prevent . 
caking. A screen analys1s of typ1cal fertilizer grade ~s shown 1n 

Table V. Dur1ng the preliminary test ser1es w1thout instrumentation 

a pr1lled high dens1ty ammonlUD n1trate ~as tes~ed which had a density 

of 62 pounds per cub1c foot and d1d not contain a coating agent. Other 

experiments were made with regular fertil1zer grade ammonium n1trate 

which had been coated with ten to twelve percent of myr1stic acid for 

the purpose of waterproof1ng. A series of tests was carr1ed out with 

a by-product in the production of fertilizer grade, the so-called 

recirculatlon product (RCP), wh1ch was of finer average particle size 

than the regular fertillzer grade as wa~ shown in the screen analys1s 

in Table VI. 

The fuel oil used as c1xture component was a No. 2 fuel oil. 

The findings of the analysis of two samples were shown in Table VII. 
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Particle Size 

hresh) 

+ 8 

- 8 I +10 

-1o I +12 

-12 I +14 

-14 I +16 

-16 I +20 

-20 

TABLE V 

Screen Analysis of Typical Fertilizer Grade 

Ammonium N1trate 

Per Cent 

1.7 

10.6 

27.2 

36.3 

15.7 

7.2 

1.3 

Per Cent 

Cumulative 

1.7 

12.3 

39.5 

75.8 

91.5 

98.7 

100.0 

Density of Prill 100 - 110 lbslft3 

Density of Amreon1um Nitrate 50 lbslft3 

Content of Si02-Coating 2.5~ - ~ 

Density of An:nonium }lit rate with Coating 47 1bslft3 
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TABLE VI 

Screen Analysis of Trpical 

Ammonium Nitrate-Reclrculation Product 

Particle S1ze Test A Te3t B Average of c ulative 
Tests A and B 

(mesh) Per Cent Per Cent Per Cent Per Cent 

+10 

-1o I +20 15.37 14.89 15.13 15.13 

-2o I +35 50.88 51.37 51.12 66.25 

-35 I +48 12.34 12.16 12.25 78.50 

-48 I +65 7.68 7.94 7.81 86.31 

-65 I +15o 9.19 9.18 9.19 95.50 

-1501 +200 3.15 3.10 3.12 98.62 

-200 1.39 1.36 1.38 100.00 



www.manaraa.com

TABLE VII 

Analys1s of No. 2 Fuel Oil 

Element Test A 

Per Cent 

Carbon 84.23 

Hydrogen 12.93 

Sulphur 0.37 

Spcc1fic Grav1ty at so• F 

Heat of Combust1on 

Approximate Assumed Chem1cal For.mula 

Percentages in Sto1chiometric Mixture to 

Provide Oxygen Balance 

Test B 

Per Cent 

86.59 

13.56 

0.43 

0.8337 g/cm3 

or 38.23 API 

19689 Btu/lb 

or 10.93 r..cal/g 

94. 41. Azcnoni um 
Nitrate 

5.61. Fuel Oil 
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Procedure 

In preparing the mdxtures of ammonium nitrate with fuel oil or 

other carbonaceous materials a number of calculations is necessary. As 

these calculations have to be repeated with each test, a set of tables 

~~s drawn up in which most of the values needed were pre-calculated and 

could be obtained readlly. These tables prov1ded infor.mation about the 

amount of mixture to be filled into the test plpe to provide for the 

deslrcd loading density. 

The nonral procedure for a single test was as follows: Composi­

tion of the m1xture, d1ameter of test plpe, and load1ng density of the 

charge was determined. The length of the pipe to be used was measured. 

Taking into account the four inches of length needed for the primer, 

the amount of mixture needed to provide for the desired loading density 

of the charge was found 1n the corresponding table. All these data 

were written on the record1ng sheet of the test. 

An appropr1ate amount of dry ammonium nitrate was weighed out 

and filled into the m1xing tub. For the standard test pipe, three 

inches 1n d1ameter and f1ve feet long, this amount of ammon1um nitrate 

was nor.rnally 6000,6500 or 7000 grams, accord1ng to the amount of mdxture 

needed for a low, med1um or high loading density. The fuel oil was 

poured into a graduated cylinder (1000 milliliter) and its density was 

measured by means of a hygrometer. The volume of oil needed to provide 

desired weight percentage in the mixture was then calculated. The amount 

of oil required was measured in the graduated cyl1nder and poured into 



www.manaraa.com

46 

the ammonium nitrate in the m1xing tub. The substances were mdxed 

thoroughly by hand or with ~~oden spoons (Flgure 5). When the components 

were intimately mixed, thP, correct amount of mixture needed, which had 

been obtained from a ta~le of pre-calculated values, was weighed and 

poured into the test pipe. 

The 1ron test p1pe to be used ~us prepared for loading by clos1ng 

the pre-drilled hole~ which were to take the corks of the pin set-up 

with dummy corks. The mixture was poured into the p1pe through a 

funnel (Figure 6). In most cases the pipe was vibrated with a hammer 

to make the ro1xture settle to the required mark four inches below the 

r1m of the p1pe. Then the pr1mer was inserted. The standard pri~er 

used consisted of a bundle of four halves of 6~ strength dynamite 

cartridges and a No. 2 electr1c blast1ng cap. This pricer f1llcd the 

space provided for it almost completely. (In the prelim1nary tests for 

the senritivity of some m1xtures the standard primer 'conrlsted of one 

cartridge of 6~ strength dynam1te and a No. 9 electr1c blasting cap. 

The space around the primer in the test pipe was filled with mixture. 

The load1ng densities 1n these tests were not pre-dete~ned.) The 

w1res of the electric cap were led through a hole in a wooden plug, 

three 1nches in d1ameter and about one inch thick, which filled the 

space 1nside tl\e p1pc cap, and then through a hole 1n the pipe cap. 

The pipe cap was screwed on tight. The loaded pipe was then carr1ed 

from the mdx1ng s1te to the blast1ng site, the latter being approxi­

mately three hundred feet away behind an earth embankment, f1fteen feet 

in height. 
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Figure 5. Mixing of the Explosive 
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Fiqu.re 6. Filling of the Test Pipe 
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At the blast1ng site the dummy corks in the pipe were replaced 

by the corks conta1n1ng the w1res of the pin set-up (Figure 7). These 

w1res, about twenty feet in length, were connected to the plug-in box 

by ~cans of a twelve lead Jones plug. The plug-in box rested in a 

specially wade protective wooden box which was imbedded in the top of 

the embankment (Flgure 8). The w1res of the primer were connected to 

the blast1ng cable and the preparations for the test were completed. 

The described preparation ~urk took twenty to th1rty m1nutes 

per test, employ1ng three ~en: one in charge of mixing, one in charge 

of the 1nstrunentat1on, and one helper. 

The 1nstrumentat1on, oscilloscope and osclllograph s1gnal generator, 

was set up on a table in a heavy wooden shelter at the m1xing slte. A 

cacera was attached 1n front of the cathode ray tube of the oscilloscope. 

The f1lm used was Kodak Tri-X film 1n single sheets wh1ch were inserted 

into a plate adapter. At blast1ng t1me the instrument operator opened 

the shutter of the ca~era wh1le count1ng loud to three. At count two 

the shutter was opened, at count three the helper operated the clectrlc 

blasting machine. Th1s simple synchronizat1on p:oved to be satlsfactory. 

The 1nstrument man kept a record of all tests on spec1al prepared 

sheets, to which the negatives of the osclllograph records were attached 

later. The m1xing man kept notes, which were later transferred to the 

the permanent test records. From these two sources the data were obtained 

for the tables of results and for the correspondlng dlagrams. 
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figure 7. Test Pipe with Wires of Pin Bet-up 
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Figure 8. Plug-in Box 
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DATA, RESULTS AND DISCtmiON 

Prelimdnary Tests 

More than one hundred prel1minary tests were perfor.med without 

the inst~entation for the measurement of the detonation velocity. 

The purpose of these tests was to gain information about the explos1-

bility of fertillzer grade ammonium nitrate-fuel oil mixtures under 

var1ous mod1ficat1ons. Experiments were made to study the effect of 

the percentage of fuel oil in the mixture, the effect of the loading 

density of the charge, the effect of the particle size of the ammonium 

n1tratc, the effects of the dicmeter and of the length of the charge, 

and tne effect of d1fferent pr1rners 1n respect to the possib1l1ty of 

1nit1at1o& of the m1xtures. Other tests 1ncluded those with special 

types of ammonium nitrate and those using lampblack oil as reduc1ng 

fuel in the mixture. 

The data and results of these tests is listed in Tables VIII to 

XV. These include the test number, the compos1t1on of the m1xture 

tested, the loading dens1ty of the charge and the diameter of the char~e. 

The particle size of the ammon1um nitrate is listed only, either in the 

"RemarksW. column or a special NParticle Size• column, when specially 

screened ammonium nitrate was used as mdxture component. A screen 

analysis of regular fert1lizer grade ~nium nitrate is g1ven in 

Table V. 

The primer used in most of these tests consisted of one cartridge 

of 6~ strength dyna~te and a No. 9 electric blasting cap. If a stronger 
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pr1mer was used, namely one cartridge of 9~ strength gelatine dynamite, 

1 3/4 inches in d1ameter and elght inches long, with a No. 9 electr1c 

blasting cap, th1s fact was recorded 1n the ''Remarks" column. Compara­

tive tests for the effect of these and other primers were listed in 

Table XV. 

W1th respect to the results of the prel1minary sensitivity tests 

the essent1al 1nformat1on to be gained was if the test would y1eld a 

complete detonat1on of the charge or not. In case the exper1ment was 

successful, that 1s, the mdxture tested under some spec1al mod1f1cation 

detonated completely, the test shows a blank space in the "Results" 

colucn of the table 1n which it was l1sted. Unsuccessful tests in wh1ch 

the primer failed to 1n1.tiate the charge of m1xture were mrked by the 

work nFailu~e• 1n the ''Results" column. In most of the latter the 

pr1mer had split the test p1pe for a length of one to t~ feet and the 

ammonium n1trate mdxture was partly scattered on the ground. In~some 

of these tests a new prir.er of higher strength was inserted 1nto the 

split end of the pipe on top of the remainder of the mdxture in the 

pipe and was in1t1ated. These secondary tests were marked by the addit1on 

of the letter A to the or1ginal test number. Part1al detonations of the 

~xture in which a larger part of the test pipe was destroyed and after 

which no scattered GUxture could be found on the ground rarely occurred. 

The tests for the effect of the percentage of fuel oil in the 

mixture on the sensltivity were llsted 1n Table VIII (three-inch diameter 

charges) and Table IX (t~-inch diameter charges). The test pipes 

were the black iron p1pes, the same as others used throughout the 
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TABLE VIII 

Sensltivity Tests for the Effect of the Percentage of 

Fuel 011 1n the Mixture 

d = loading density of the charge (g/cm3) 

D = diameter of the charge (inches) 

AN = fertil1zer grade ammonium nitrate 

Test No. AN Fuel Oil d D Remarks Results 
M1xture g/cm3 1nches 

4 95/5 0.779 3 

24 95/5 0.784 3 

25 95/5 0.862 3 

3 95/5 0.870 3 

26 95/5 0.879 3 

44 95/5 0.854 3 fiber plpe failure 

41 95/5 0.858 3 f1ber pipe failure 

23 90/10 0.838 3 

22 90/10 0.904 3 

5 90/10 0.926 3 

6 90/10 0.928 3 

9 85/15 0.899 3 

7 85/15 0.963 3 

8 85/15 0.969 3 failure 

10 85/15 0.976 3 failure 
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TABLE IX 

Sensitivity Tests for the Effect of the Percentage of 

Fuel 011 in the M1xture 

d = loading density of the charge 

D = diaffieter of the charge 

AN = fertil1zer grade ammonium nitrate 

901. Dyn. = 9~ strength gelat1ne dynamite primer, one cartridge 

Test No. All Fuel 011 d D Remrks Results 
M1xturc gfcm3 inches 

84 9£/2 0.920 2 
86 9H/2 0.946 2 
85 98/2 0.954 2 failure · 
SSA £~/2 2 9Q'k Dyn. 
Ge 97/3 0.965 2 
14 95/S 0.878 2 
27 95/5 0.892 2 
29 95/5 0.921 2 
28 95/5 0.946 2 
56 9r:/3 0.956 2 
54 95/5 0.970 2 
57 95/5 0.971 2 
55 95/5 0.974 2 
53 95/5 0.981 2 
66 92.5/7.5 0.944 2 
67 92.5/7.5 0.955 2 
21 90/10 0.867 2 
20 90/10 0.872 2 
63 90/10 0.901 2 failure 

90/10 0.910 2 fa1lure ' 65 
64 90/10 0.912 2 failure 
15 90/10 0.933 2 
58 90/10 1.020 2 failure 
60 90/10 1.027 2 failure 
59 90/10 1.040 2 failure 
61 90/10 1.051 2 failure 
62 90/10 1.061 2 failure 
17 85/15 0.974 2 failure 
16 85/15 0.975 2 failure 
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course of this investlgation. In an experiment with three-inch diameter 

f1ber plpes (tests No. 41 and 44) detonation fa1led. As the mdxture 

used in these two experiments proved to detonate consistently in iron 

pipes, it was concluded that the f1ber pipe material was not suitable 

for this investigation. It was assumed that the fiber material could 

not offer sufficient confinement to the explosive to secure a stable 

detonat1on. 

In three-inch diameter charges aremonlum n1trate mixtures contain­

lng f1ve, ten, and f1fteen percent fuel oil could be initiated rather 

consistently by the standard pr1mer of these tests. The only failures 

occurred w1th 85/15 ammonium n1tratc-fuel oil mixtures with loading 

dens1t1es over 0.965 grams per cubic cent1reeter. The decrease of the 

test pipe diameter from three inches to two inches brought about a 

decrease of the sens1t1v1ty of the m1xturcs. W1th loading densities 

above 0.900 grams per cub1c cent1meter mixtures conta1ning two percent 

and ten percent fuel oil failed to detonate w1th the standard primer, 

while 85/15 ammon1um n1trate-fuel oil mixtures could not be detonated 

at all. This conf1r.med the results of earlier research, that an excess 

of fuel oil 1n the mdxture and an increased loading dens1ty would decrease 

the sensitiv1ty of the m1xtures.lS The failure of mixtures with highly 

pos1tive or negative oxygen balances also gave support to the assumption 

that the maximum sensitivity of the mixtures should occur near the oxygen 

balanced composit1on. The 98/2 ammonium nitrate-fuel oil m1xture which 

had failed to detonate with a 6~ strength dynamite primer subsequently 

was initiated by a 9~ strength gelatine dynam1te primer. 
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The results of the tests for the effect of the load1ng density 

on the sensitiv1ty of 95/5 and 90/10 a~on1um nitrate-fuel oil ~xtures 

are tabulated in Table X. The 95/5 ammon1um nitrate-fuel oil mixture 

detonated ~onsistently even at higher loading densities. The 90/10 

a~onium nitrate-fuel oil mdxture failed to be initiated by the primer 

used when the loading density was increased over 0.900 grams per cub1c 

cent1meter (in two-inch diameter tests p1pes). This again emphasized 

prev1ous reports that an increase in loading density would result in a 

decrease in sens1tivity. 

In Table IX the data are llsted for tests on the effect of the 

d1ameter of the charge on the sens1t1vity of a 95/r ammon1um n1trate-

fuel o1l mdxture. In the tests w1th 1.5 1nches and one 1nch as charge 

dlameter the ammonium nitrate used in the ~xture was of the particle 

size -30/+35 mesh. W1th aremon1um nitrate of thir fine particle size 

the mixture seemed to detonate even ln one-1nch diameter charges if the 

low loading density, between 0.8 and 0.95 grams per cubic centimeter, 

could be maintained, which permits in1t1at1on readily. The fa1lures of 

tests 76 and 77, both employing a 95/5 ~xture of th1s fine particle 

size ammonium nitrate and fuel oil, were further explained by the foot 

notes in Table XII» 1n which again the importance of the loading density 
, 

was emphasized. As was apparent, 95/5 fertilizer grade ammon1um n1trate-

fuel oil mixtures could be inittated consistently by the standard prireer 

employed in a d1ameter of charge as small as two inches. Sensitivity 

tests w1th regular ammonium nitrate-fuel oil mixtures in charges with 

even small diameter were not perfor.med 1n thls stage of the investigation 
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TABLE X 

Sens1tivity Tests for the Effect of Loading Density 

d • 1oad1ng density·of the charge 

D = d1ameter of the charge 

AN • ferti1lzer grade acmonium n1tratc 

Test No. AN Fuel 011 d D Rerarks Results 
g/cm3 1nches 

14 95/5 0.878 2 
27 95/5 0.892 2 
29 95/5 0.921 2 
28 95/5 0.946 2 
56 95/5 0.956 2 
54 95/5 0.970 2 
53 95/5 0.981 2 
4 95/5 0.779 3 

24 95/5 0.784 3 
25 95/5 0.862 3 
26 95/5 0.879 3 
21 90/10 0.867 2 
20 90/10 0.872 2 
63 90/10 0.901 2 failure 
65 90/10 0.910 2 failure 
58 90/10 1.020 2 failure 
59 90/10 1.040 2 failure 
61 90/10 1.051 2 failure 
62 90/10 1.061 2 failure 
23 90/10 0.838 3 
22 90/10 0.904 3 
6 90/10 0.928 3 
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TABLE XI 

Sens1tivity Tests for the Effect of the D1ameter of Charge 

and Tests for the Effect of the Length of Charge 

d = loading dens1ty of the charge 

D = d1ameter of the charge 

ps = particle s1ze of the ammonium nitrate (mesh) 

9~ Dyn. = 9~ strength gelatine dynamite pr1mer 

L = length of the charge 

Test tlo. A~ Fuel 01l d D L Remarks Results 
l--tixture g/cm3 inches feet 

4 95/5 0.779 3 
25 95/5 0.862 3 
26 95/5 0.879 3 
14 95/5 0.878 2 
27 95/5 0.892 2 
53 95/5 0.981 2 
71 95/5 1.010 1.5 -30/+35 ps 
78 95/5 0.946 1 -30/+35 ps 
76 95/5 1 -30/+35 ps failure 
77 9575 1 -30/+35 ps failure 

I 

11 95 5 0.883 3 20 
18 95/5 0.889 2 21 
30 95/5 0.901 2 21 
12 90/10 0.935 3 20 failure 
12A 90/10 3 17 9()1. Dyn. 
19 90/10 0.892 2 21 
31 90/10 1.001 2 21 failure 
31A 90/10 2 17 907. Dyn. failure 
]3 85/15 0.993 3 21 failure 



www.manaraa.com

TABLE XII 

Sensitivity Tests for the Effect of Particle 

Size of the ~onium N1trate 

d = loading dens1ty of the charge 

D = d1ameter of the charge 

ps = particle 3ize of the arrmon1um nitrate 

an = screened arr.rnonium nitrate 

Test No. AN Fuel Oil d D ps 
M1xture g/cm 1nches mesh 

48 95/~ 0.922 2 -10/+12 
36 95/5 0.917 3 -14/+16 
49 95/5 0.910 2 -18/+20 
70 95/5 1.108 1.5 -18/+20 
51 95/5 1.109 1.5 -18/+20 
37 95/5 0.809 3 -30/+35 
71 95/5 1.010 1.5 -30/+35 
50 95/5 1.059 1.5 -30/+35 
78 95/5 0.946 1 -30/+35 
76 95/5 a) 1 -30/+35 
77 95/5 b) 1 -30/+35 

Results 

failure 
failure 

failure 
failure 

a)The amount of m1xture fllled 1n the p1pe 1n this test was too small 

to have insured complete fill1ng of the pipe. The m1xture probably 

clogged in the pipe dur1ng filling before reaching the bottom of the 

pipe. The end of the pipe blown off 1n one plece, 1'2• long, seemed 

to confir.m this assumption. 

b)The density was not dete~ined because of an apparent error in the 

record of this test. However, the amount of mdxture used indicated 

a rather high loading density. 

60 
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however, charges with smaller diameter were initiated successfully in 

the test series studying the effect of the diameter of the charge on the 

detonation velocity and will be d~scussed there. 

, A number of tests were performed to investigate the effect of the 

length of the charge on the stab1l~ty of the detonatlon. These tests 

were also tabulated in Table XI. M1xtures which in prev1ous tests had 

proven to detonate ~n charges of normal length, that 1s, a length of 

seven feet 1n these preliminary tests, were loaded into pipes of twenty 

or twenty-one.feet length. The failures in these tests were due to the 

higher load1ng dens1ties in comparison to the tests with normal length 

charges. A comparison with tests in no~~l length charges with correspond-

ing loading densities, as they are l1sted in Table X, would show that at 

these loading densities also nor.mal length charges falled to detonate. 

(The loading densit1es 1n all these preliminary tests were not pre-

deter.mined or controlled.) From the successful tests of this series it 

~~s concluded that, if initiat1on of the explosive m1xture was secured, 

it would detonate stably also over greater lengths of charge. Th1s 

conclusion would, however, only perta1n to the diameters of charge . 
tested, nacely two and three 1nches, and larger di~eters. 

The data and results of tests investigating the effect of the 

particle size of the ammonium n1trate used 1n 95/5 ammonium nitrate-

fuel oil ndxtures are listed 1n Table XII. Following Eyring's grain-

burning theory emphas1z1ng the effect of more unifor.m and finer particle 

size, it was expected that screened ammonium nitrate with an only small 

particle s1ze distributio:\ and in the case of the -30/+35 mesh ammonium 
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nitrate with an also smaller average particle size would 1ncrease the 

sensitivity of the ammon1um n1trate-fuel oil mixtures. Therefore the 

tests were carried out in charges of s~ller diameter in order to in­

vestigate at the same time the lnfluence of the diameter of the charge. 

Consequently the failure of some of the tests in this series could be 

assuced to be due to the small diameter of charge, as the mdxtures used 

in these tests detonated in charges of larger diameter. The assumpt1on 

that a decrease in particle s1ze and part1cle size distribution of the 

ammonium nitrate would increase the sensitivity of the nuxtures was 

conf1rmed. 

The tests for the effect of different primers were llsted in 

Table XIII. It was found that a pr1mer cons1sting of one cartridge of 

601. strength dyna~te, li 1nches 1n di·meter and e1ght 1nches long, 

consistently lrlitiated a 95/5 ar.monium n1trate-fuel 011 ~xture. A 

pr1ncr cons1sting of one cartr1dge of 4Qt strength dynamdte, li inches 

1n dlarr,eter and eight inches long, fa1led to initiate the detonation of 

th1s mixture. 
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To test the postulate of the overdrive theory by Tikker25 a number 

of tests were performed employing heavy primacord as primer. Using one­

foot length of heavy primacord w1th a No. 9 electric blasting cap as 

primer the 400 grains per foot pr~cord and the 300 grains per foot 

primacord in1tiated the 95/5 ammonium nitrate-fuel oil mixture success­

fully while the 200 grains per foot primacord and the 150 grains per 

foot pr1macord failed to do so. 
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TABJ:E XIII 

Tests for the Effect of D1fferent Primers 

Test pipe diameter: 3 inches 

Composition-~: 95/5 AN/fuel 011 

d = loading density of the charge 

PC = primacord 

gr = grains per foot 

Test llo. d 
g/cm3 

Primer Results 

1 0.883 401. dynamite, 1 cartridge failure 
4 0.779 6 01. dynamite, 1 cartridge 

24 0.784 6 01. dynamite, 1 cartr1dge 
97 0.800 400-gr. PC, 1 1'-length 
99 0.778 300-gr. PC, 1 !'-length 

100 0.794 200-gr. PC, 1 1'-length fa1lure 
98 0.787 150-gr. PC, 1 1'-length failure 
94 0.790 50-gr. PC,(through whole length of charge 

+400-gr. PC,) 
96 empty pipe 50-gr. PC,(through whole length of pipe 

+400-gr. PC,) ? 
95 0.782 50-gr. PC,)through ~nole length of charge 

+150::Slr• PCi) ? 
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Two tests were perfor.med 1n wh1ch a primer of heavy primacord was 

running through the whole length of the charge of a 95/5 ammonium nitrate-

fuel o1l mixture. Th1s primer was prepared by taping one-foot long strips 

of heavy priwacord end to end to a pr1rracord (50 grains per foot) trunk-

line to the end of which a No. 9 clectr1c blasting cap was connected • 
• 

There tests appeared to be successful. A th1rd test errployed the s~e 

type of pri~er in any empty pipe. The latter test was carr1ed o~t to 

make a comparative study of the edges of breakage on the small pieces 

of the iron test plpe which could be found after the detonation. In 

the f1rst two tests the p1pes were broken 1nto small pieces as normal 

and no scattered mixture could be found on the ground. However, the 

edges of breakage of the ~all pleces had a d1fferent appearance than 

they had after previous tests with this mixture and the standard primer. 

It scereed as if there was less work perfor-med on these edges, which were 

coarse and angular and not fused and edged as they were after prev1ous 

successful ammon1um nitrate-fuel oil mixture detonat1ons. So it was 

assuu.ed that the explosion of the pr1macord would break the test pipe 

before the detonating ammonium nitrate-fuel oil mixture, if 1t was 

initiated, could break it. How the primacord alone would break the test 

pipe was then demonstrated in test No. 96 with an empty p1pe. Because 

the primacord alone could break the test pipe there was no assurance for 

the other two tests that the a~nium nitrate ~xture detonated also, 

although no evidence of unexploded mdxture could be found on the ground. 

However, the force of the pr~acord explosion could have widely scattered 

the ammonium nitrate m1xture rather easily. 
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These were only the prel1minary tests without the instrumentation 

for the measurement of the detonat1on velocity. A u~re detailed study 

of the effect of different pr1reers and methods of initiation was carried 

out Wlth the lnstrumentation. These tests were li~ted 1n Tables XXV and 

XXVI and were described 1n the accompanying d1scuss1on. 

An extens1ve number of sensitivity tests was per~ed w1th ~xtures 

1n which speclal types of ammonium nitrate were used. These tests were 

l1sted in Table XIV. 

The f1rst of these spec1al type nuxtures ~as a product with the 

co~paratively high density of sixty-two pounds per cubic foot. (Regular 

fertilizer grade ammonium n1trate has a density of forty-seven pounds per 

cubic foot.) Th1s product d1d not conta1n the three percent of dlatoma­

ceous earth as a coating substance for ~isture resistance. The high 

denslty ammonium nitrate was tested in 95/5 ~xtures with fuel oil and 

also w1th lampblack 011. After tests in three-inch diameter charges had 

failed, addit1onal tests were performed in four-inch diameter and six-inch 

d1ameter charges. These tests also y1elded detonat1on failures. In 

conclusion 1t could be sa1d that th1s type of ammonium n1trate was unsatis­

factory as a component of explosive ammonium n1trate-reducing fuel mdxtures. 

The problem of f1nding a waterproof explosive ammonium nltrate­

reducing fuel mixture was recognized also by other research and was 

mentioned in the rev1ew of llterature. In this investigat1on a number 

of tests were carried out with a spec1al ammonium nitrate (WP) which had 

been coated with ten to twelve percent of myristic acid as waterproofing 

agent. In dry condition, th1s product proved to be a good explosive, 
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TABLE XIV 

Sens1tiv1ty Tests for the Effect of Different 

Trpes of Ammonium N1trate 

HD = h1gh density ~on1um nitrate (d = 62 lbs/ft3) 
WP = special ammonium n1trate, coated with ~~terproofing agent 
DE = d1atomaceous earth (coating substance) 
MA = myr1stic acid (coating substance) 
WD = woodpulp FO = fuel 011 
AL = powered aluminum LB = lampblack o1l 
AN = fertillzer grade ammonium nitrate 
D • di~eter of charge d = loading density 
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pc = 50-grain pri~acord trunkline running through whole length of charge 
9~ Dyn. = 9~ strength gelatine dyn~te pr1cer, 1 cartridge 

Test d D Con-position - 1. Remarks Results 
No. g/cm3 1n. of Mixture 

32 0.937 3 95HD/5FO failure 
33 1.030 3 95HD/5FO failure 
42 0.987 3 95HD/5FO HD with 3~ DE failure 
45 1.014 4 95HD/5FO failure 
45A 1.014 4 95HD/5FO 901. Dyn. failure 
81 1.004 6 95HD/5FO failure 
81A 1.00~ 6 95HD/5FO 901. Dyn. failure 
83 1.062 3 95HD/5LB failure 
83A 1.062 3 95HD/SLB 901. Dyn. failure 
87 0.943 3 1 OOHD-WP /0 ( 1 01. lolA) dry detonation 

incomplete 
88 0.943 3 lOOHD-WP/0 (sat. 1n AN-) 901. Dyn.+pc failure 
89 0.943 3 lOOHD-WP/0 (solution ) 9 01. Dyn. +pc failure 
93 1.001 3 80HD/20AL detonation 

doubtful 
38 0.792 3 lOOWP/0 dry 
39 0.792 3 lOOWP/0 sat. 1n water 901. Dyn. failure 
40 0.792 3 lOOWP/0 sat. in Water-2' 901. Dyn. failure 
69 0.892 2 lOOWP/0 dry 
72 0.886 1.5 lOOWP/0 dry 
74 0.886 3 lOOWP/0 sat. 1n water 901. Dyn. +3pc failure 
75 0.886 3 lOOWP/0 sat. in water 901. Dyn.+6pc failure 
82 0.886 3 lOOWP/0 sat. in water 
90 0.637 3 97X/3FO X = 83. 3WP /16. 7WD 

901. Dyn .+3pc failure 
failure 
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because the myr1stic ac1d is also a hlghly carbonaceous substance 

(Cl4II2802). Even in charges Wlth dlameters as s~all ar two and 1.5 

1nches the ama~n1um nitrate (WP) char~es detonated successfully over 
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the whole length of the charge. Also in the h1gh density product the 

coating of myrist1c acid provided enough sensit1zation to y1eld at least 

a part1al detonation in a three-inch diameter charge (test No. 87), wh1ch 

had not been achieved by rndxtures of this product with fuel oil or lamP­

black oil. However, the WP-product did not fulf1ll 1ts purpose as a 

waterproof explos1vc. Arr~oni~ n1trate (~~) charges saturated with 

water fa1led to ~ctonate even w1th such pri~ers as three or slx l1nes 

of priracord (50 gra1ns per foot) running through the whole length of 

the charge and connected to a cartridge of 9~ strength gelat1ne dynam1tc 

on top of the charge. It seemed that the aikount of heat necessary to 

vapor1ze the water content in the m1xture was too h1gh to allow for an 

init1at1on of t~e m1xture. In one test (Ho. 40) the rn1xture was satu­

rated with water only to a length of two feet from the bottom of the 

charge, the rema1ning f1ve feet length of the charge be1ng left 1n dry 

condition. Th1s test was successful. Apparently the amount of heat 

required to vapor1ze the content of water in thls test could be supplied 

by the dctonat1ng dry ammonium nitrate. 

To increase the capac1ty of the ammoni~~ nitrate to absorb the 

water, it was m1xed with fine ground ~odpulp to for.m an 83.3/16.7 

mixture. Th1s ~xture was corebincd ~ith fuel oil in the proport1ons 

of 97 percent ammonium n1tratc-woodpulp mixture and three percent fuel 

oil. But even in dry condit1on th1s nuxture did not detona~e. For the 
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time being the attempts to f1nd an aromon1um nitrate whlch would yield 

a waterproof explosive rema1ned unsuccessful. 
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A series of tests was carried out with ammonium nltrate-lampblack 

o1l mixtures and was tabulated 1n Table XV. The lampblack oil 1s a soot 

oil, contain1ng about 8.5 percent carbon. The sensitivity of the ammoni~ 

n1trate-l~pblack o1l mixtures corresponded approxi~ately to that of 

ammonium nitrate-fuel oil mixtures of equal composition percentages. 

Also in Table XV the data and results were listed of a number 

of tests for the effect of powdered aluminum as sens1t1z1ng agent 1n 

~xtures w1th arr.conium n1trate. The sto1chiometr1c percentager to pro­

vide for an oxygen balanced mixture are approximately 85/15 amreonium 

nitrate-aluminum. In these tests (except for test No. 92) 80/20 ammonium 

nitrate-aluminum mixtures were employed. These mLXtures proved to be 

very sens1t1ve. The alum1num addit1ve y1elded a successful detonation 

1n a mixture w1th regular ammon1um nitrate 1n a d1ameter of charge of 

only one inch and produced a part1al detonatlon in a m1xture with the 

normally inert high density ~~onium n1trate. The high capacity of 

powdered alumdnum as a sensitizer in m1xtures with ammonium n1trate ~s 

clearly de~nstrated. 



www.manaraa.com

TABLE XV 

Sensit1vity Tests for the Effect 

of Different Reducing Fuels 

FO = No. 2 fuel o1l 

LB = la~pblack oll, containing about 8.5~ carbon 

AL = powdered aluminum 

HD = h1gh density arerDnium nitrate (d = 62 lbs/ft3) 

d = loading dens1ty of the charge 

D = dl~etcr of the charge 

Test Fuel 
No. 

43 LB 
47 LB 
46 LB 
46A LB 
52 LB 
73 LB 
79 LB 
80 LB 
83 LB 
83A ·LB 
91 AL 

101 AL 
92 AL 

+FO 
93 AL 

Composltion - ~ d 
gfcm3 

95/5 0.907 
90/10 0.993 
85/15 1.069 
85/15 1.069 
95/5 0.965 
95/5 0.962 
95/5 0.879 
95/5 0.890 
HD95/5 1.062 
HD95/5 1.062 
80/20 0.913 
80/20 1.141 

83.4/15/1.6 0.972 
HD80/20 1.001 

D Rer.arks 
ln. 

3 
3 
3 
3 9~ Dyn. 
2 
1.5 
1 
1 
3 
3 9~ Dyn. 
3 
1 

1 
3 

Results 

failure 
failure 

failure 
failure 
failure 
failure 
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partial 
detonation 
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DETONATION VELOCITY TESTS 

The selected data and results compiled and discussed in the 

following were obtained from the records of nearly three hundred tests 

in which the instrumentat1on for the measurement of the detonation velocity 

had been applied. It was the obJect of these tests to 1nvcstigate the 

effects of a number of parameters on the detonation velocity of attmOnium 

nitrate-reducing fuel m1xtures. 

The Effect of the Percentage of Fuel 011. The records of the 

testr 1n wh1ch the effect of the percentage of fuel o1l 1n the m1xture 

had been 1nvest1gated were shown in Table XVI. The standard diareetcr of 

the test p1pes was three inches. In the tests with regular fert1l1zer 

grade aremon1um n1trate (AN) the loading denrity was kept at 0.900 grams 

~r cubic centimeter. The tests with the a~on1um n1tratc recirculat1on 

product (RCP) showed that this low loading density was difficult to 

obtain. Especially ndxtures with a high percentage of fuel oil could 

not be f1lled so loosely as to keep the loading density at this low 

value. Th1s was due to the high density of the recirculation product 

itself because of less a1r space between gra1ns as a result of the smaller 

average particle size of this product and to the fact that high fuel o1l 

percehtages would cause an add1t1onal 1ncrease in the over-all density 

of the mixture. Therefore the loading density for the tests with RCP­

mdxtures was deter.m1ned to be 1.100 grams per cubic centUneter, wh1ch 

seemed to be satisfactory 1n ~xtures w1th high percentages of fuel oil. 

However, w1th lower fuel o1l percentages th1s loading density could not 



www.manaraa.com

71 

TABLE XVI 

Tests for the Effect of the Percentage of Fuel Oil in the Mixtures 

d = loading dens1ty of the charge (g/cm3) 

D = detonation velocity (feet/second) 

Test pipe diameter: 3 inches 

Test C01r.pos1 t1on - 1. d D 
No. AN/Fuel 011 g/c:n3 Feet/Second 

279 99/1 0.900 8440 
278 98/2 0.900 10437 
277 97/3 0.900 11200 
276 96/4 0.900 11850 
229 95/5 0.900 11706 
275 95/5 0.900 12156 
270 91a/6 0.900 12012 
269 93/7 0.900 12007 
268 92/8 0.900 11979 
267 91/9 0.900 11767 
266 90/10 0.900 11581 
265 89/11 0.900 11581 
263 88/12 0.900 11535 
262 87/13 0.900 11293 
264 86/14 0.900 failure 

RCP/Fue1 011 

347 96/4 1.050 13610 
355 94/6 1.050 13760 
356 93/7 1.050 13590 
249 95/5 1.100 14639 
342 94/6 1.100 15207 
346 92/8 1.100 13350 
287 90/10 1.100 13267 
286 89/11 1.100 13138 
285 88/12 1.100 12714 
283 87/13 1.100 12125 
282 86/14 1.100 12161 
284 85/15 1.100 fa11ure 

-10/+12/Fue1 Oil 

237 So/4 0.850 11100 
235 95/5 0.850 11279 
236 94/6 0.850 11319 
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be obtained with the load1ng method employed and for these tests had to 

be lowered to 1.05 grams per cubic cent1~eter. Several tests w1th a 

mdxture using -10/+12 mesh particle size ammonium nitrate were carried 

out with a loading dens1ty of 0.850 grams per cub1c centimeter. 

In ~xtures with regular ammonium nitrate the lowest percentage 

of fuel oil with which a detonation of the mdxture could be obtained was 

one percent, the highest was thirteen percent. A recirculation product 

ammonium nitrate-fuel oil mixture yielded a detonat1on also with a fuel 

011 percentage of fourteen percent. The detonation velocities ~easured 

were plotted against the percentages of fuel o1l 1n the m1xture in F1g-

ure 9 1n order to ~how how the percentage of fuel oil would 1nfluence 

the detonation velocity of the mdxture. It was apparent from this figure 

that the rnaxi~um detonation velocity of an ammon1um nitrate-fuel oil 

m1xture would be obtained if the mdxture was oxygen balanced, that is, 

it would conta1n 94.4 percent ~~n1um n1trate and 5.6 percent fuel oil. 

W1th 1ncreasing percentage of fuel oil the detonat1on veloc1ty of the 

m1xture would decrease slowly wh1le with decreasing percentage 1t would 

drop sharply. 

The fraction N of completed reaction 1n the detonat1on head, the 

latter being considered the detonat1on Telocity deter.mining region of 

the react1on zone, was also plotted aga1nst the percentage of fuel oil 
• 

in the ~xture. This value N was obtained from the application of an 

empirical equation given by Cook.24 The values of the theoretical or 

ideal detonat1on velocities of the mdxtures were obtained from the 

application of the calculation methods of the ther.mo-hydrodynamlc theory. 
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The data and results of the calculations of the values of N were l1sted 

in Table XVII. Except for the low percentages of fuel oil this fraction 

N see~ed not to vary too much w1th a change in the percentage of fuel 

oil 1n the mixture, indicating that the 1ncrease or decrease in detonat1on 

veloc1ty ow1ng to the change 1n the percentage of fuel oil was not as 

much due to a change in the amount of the fraction of completed react1on 

N as to the d1fference 1n the ~Dunt of energy or heat suppl1ed by th1s 

fraction. 

The Effect of the Load1ng Dens1ty of the M1xture. Several series 

of tests were made to study the effect of the loading dens1ty of the 

mixture on the detonat1on velocity. In each scr1es all other parameters 

such as dlametcr of charge, part1cle s1ze of the ammonium n1trate, compo­

sitlon of the mdxture, and type of pr1reer were kept constant while the 

loading dens1ty was increased gradually with cac· test. 

All the test series could be classif1ed into two groups. The 

f1rst group cons1sted of the f1ve test ser1es 1n ~nich the diameter of 

the charge was changed with each new scr1es. In these tests the mixture 

had a compos1t1on of ninety-f1ve percent amreon1um n1trate and fiTe percent 

fuel oil. A standard primer was employed consisting of a bundle of four 

hal~es of 6~ strength dynam1te cartridges held together by the wires of 

a No. 9 electric blast1ng cap. In the tests with two-1nch d1ameter 

pipes due to the smaller d1ameter a bundle of only two halves of a 6~ 

strength dynamite cartridge could be used as pri~er. The six-inch and 

eight-inch diameter p1pes had iron plates welded to both ends, to one of 
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TABLE XVII 

Fraction of Completed Reaction N in the Tests for the Effect 

of the Percenta2e of Fuel Oil 1n the M1xture 

D = ~easured detonation velocity {feet/second) 

D+ = 1deal detonation ve1oc1ty {feet/second) 

u = fract1on of completed react1on (= o2jo+2) 

Loading dens1ty of the charge= 0.900 g/cm3 

Test pipe diameter: 3 1nches 

Cocposltion - 1. D n+ N 
AN/Fuel 011 Feet/Second Feet/Second 

99/1 8440 12775 0.43649 

98/2 10437 13625 0.58678 

97/3 11200 14300 0.61343 

96/4 11850 14950 0.62828 

95/5 11706 15400 0.57780 

95/5 11931 15400 0.60022 

94/6 12012 15650 0.58912 

93/7 12007 15575 0.59431 

92/8 11979 15400 0.60506 

91/9 11767 15225 0.59733 

90/10 11581 15050 0.59213 

89/11 11581 14850 0.60819 

88/12 11535 14680 0.61742 

87/13 11293 14500 0.60657 
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these end plates with a two and one half-inch hole in ~t ~~s attached 

a p1ece of three-inch d1arneter pipe about four inches long as a mouth­

plece. Th1s mouthplece was to hold the standard primer. While' 1n the 

tests with s1x-inch diameter pipes this pr1mer proved to be suffic1ent 

to secure in1t1ation of the m1xture it fa1led to detonate the charges in 

the e1ght-1nch d1areeter pipes. It was ass~~ed that th1s fa1lure was 

caused by the proportion of diameter of primer to d1ameter of charge. 

Therefore, in the follow1ng tests a layer of 6~ strength dynam1te obta1ned 

from twenty broken up cartr1dges f1lled the last four 1nches of the elght­

lnch d1aceter plpe. A standard primer was inrerted into the reouthp1ece 

as usual. Trese charges detonated sat1sfactor1ly. In add1tion to the 

load1ng dens1ty tests with regular fertllizer grade a~onium n1trate (All) 

w1th the d1ameter of charge as the second changing parameter, for com­

parison a test ser1es was perfo~ed w~th a 95/5 m1xture of ammon1um 

n1trate recirculation product (RCP) and fuel oil in three-lnch d1ameter 

pipes. The results of all these tests were listed 1n Table XVIII. In 

the second group of loading dens1ty tests the ~ameter of the charges 

was three 1nches throughout, while the part1cle s1ze of the ammonium 

nitrate used was changed w1th each new series. The nuxtures 1n these 

te~ts had a composit1on of ninety-four percent ammonium nitrate and six 

percent fuel oil. The results of these tests were shown 1n Table XIX. 

The data and results in Tables XVIII and XIX were employed in 

drawing F1gures 10 and 11, which sl·ow the relationshlp between loading 

density and detonat1on velocity as found 1n these loading dens1ty tests. 

The lower 11m1t of the load1ng dens1ty to be tested was set by the 
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TABLE XVIII 

Tests for the Effect of the Loading Density 

Composition - 1.: 95/5 AN Fuel Oil 
d = loading dens1ty of the charge (g/cm3) 
D = detonation velocity (feet/second) 

Test Diameter of Test Pipe d D 
No. Inches g/cm3 Feet/Second 

357 2 0.750 9630 
358 2 0.800 10270 
359 2 0.850 10530 
360 2 0.900 10810 
310 2 0.900 10136 
361 2 0.925 failure 
206 3 0.750 11100 
239 3 0.750 10714 
226 3 0.770 11000 
240 3 0.770 11288 
231 3 0.800 10875 
241 3 0.800 10879 
230 3 0.850 11450 
229 3 0.900 11706 
275 3 0.900 12156 
232 3 0.950 12300 
202 4 0.750 11488 
203 4 0.800 11819 
204 4 0.850 12422 
208 4 0.880 13105 
207 4 0.900 13506 
222 6 0.770 12400 
210 

,. 0.800 12850 0 

212 6 0.800 12763 
223 6 0.850 13361 
225 6 0.880 13850 
224 6 0.900 14367 
242 8 0.850 13725 
326 8 0.900 13990 
343 8 0.900 14140 
Coml?£sition - 1.: 95Z5 RCPZFuei Oil 
234 3 0.850 12629 
238 3 0.850 12581 
243 3 0.850 12908 
244 3 0.880 12743 
245 3 0.900 12493 
246 3 0.950 13044 
247 3 1.000 13600 

248 3 1.050 14175 

249 3 1.100 14639 
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TABLE XIX 

Tests for the Effect of the Loading Density 

Composl tion - 1.: 94/6 lUI/Fuel Oil 

Test P1pe Diameter: 3 1nches 

d = loading density of the charge {g/cm3) 

D = detonation velocity (feet/second) 

Test 
llo. 

236 

216 

250 

251 

252 

253 

258 

254 

255 

256 

257 

259 

183 

271 

272 

355 

342 

348 

349 

350 

Part1cle Size 
Mesh 

-10/+12 

-10/+12 

-14/+16 

-14/+16 

-14/+16 

-14/+16 

-14/+16 

-18/+20 

-18/+20 

-18/+20 

-18/+20 

-18/+20 

-20 (RCP) 

-20 (RCP) 

-20 (RCP) 

-20 (RCP) 

-20 (RCP) 

-30/+60 

-30/+60 

-30/+60 

d 
g/cm3 

0.850 

0.915 

0.800 

0.850 

0.900 

0.950 

1.000 

0.800 

0.850 

0.900 

0.950 

1.000 

0.888 

0.900 

0.900 

1.050 

1.100 

0.850 

0.900 

0.950 

79 

D 
Feet/Second 

11319 

12300 

11706 

11872 

12300 

12722 

13111 

11944 

12300 

12750 

13422 

13739 

12793 

12975 

13328 

13760 

15207 

13430 

14030 

15080 
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approximate density of the loose mixture, the upper l1mit was set by the 

li~tat1ons of the equ1pment employed and the procedure followed in flll­

ing the mixture 1nto the pipes. W1th more force appl1cd to the fllled 

mixture than Just the hammer1ng of the test plpe probably even higher 

load1ng densit1es could be obtained than the ones recorded, although the 

ga1n of exper1ence from such tests ~hould be only sllght. 

Tne Jia;rams (F1gurcs 10 and 11) show that the detonation velocity 

of ammon1um n1trate-fuel oil mdxtures in~reased with an 1ncrease in load­

ing dens1ty. Tl\is appears only loglcal as L0rc ~nor~: shoul~ be supplied 

to the detonation wave when more wass reacts per un1t volume. The only 

l1rn1tat1or l~posed by an 1ncreas1ng loading dens1ty seemed to be 1ts 

~ecreas1ng sens1tiv1ty as mentioned earl1er. 

The Effect of the Diameter of the ~narge. Two groups of tests 

were pcrfor.reed to lnvestigate the effect of the d1ameter of the charge. 

The f1rst group employed a 95/5 m1xture of regular fertilizer grade 

ammonium n1trate and fuel oll at a loading dens1ty of 0.900 grams per 

cubic centimeter, the second used a 94/6 compos1tion of recirculation 

product ammonium nitrate and fuel 011, also at a load1ng density of 

0.900 grams per cubic cent1metcr. The d1ameters of charge tested were 

ln llne w1th the diameters of the test pipes available. The primer for 

the one-1nch and 1.5-inch dlameter tests was one half of a 601 strength 

dyn~te cartridge. All the other charges were initiated w1th primers 

as descr1bed in the loading density tests. The data and results of the 

diameter tests were listed in Table XX. 
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TABLE XX 

Tests for the Effect of the Diameter of the Charge 

d = load1ng dens1ty of the charge (g/cm3) 

D = detonation velocity (feet/second) 

Compos1 t1on - 1.: 95/5 AN/1-'uel Oil 

Test d D1ameter of Test Pipe D 
No. gfc;n3 Inchec- Feet/Second 

312 0.900 1 failure 
311 0.900 1.5a 9150 
310 0.900 2 10136 
360 0.900 2 10810 
229 0.900 3 11706 
275 0.900 3 12156 
207 0.900 4 13506 
224 0.900 6 14367 
326 0.900 8 13990 
343 0.900 8 14140 
Com~sit1on - 1t: 94Z6 RCPZFuel 011 
316 0.900 1 inadequate record 
274 0.900 1.5a 10439 
273 0.900 2 11321 
271 0.900 3 12975 
272 0.900 3 13328 
315 0.900 4 14667 
335 0.900 6 15400 
314 0.900 8 15483 

qActua1 diameter of test pipe was 1.5625 inches 



www.manaraa.com

83 

E~ploy1ng these data and results F1gure 12 was drawn showing the 

relat1onship between diameter of charge and detonation veloc1ty. It was 

apparent that the d1aceter of charge had a marked effect on the detonation 

veloclty. In small d1ameters, that is from 1.5 to four 1nches, the deto­

nation velocity increased rapidly w1th lncreasing d1ameter of charge. 

In medlum d1ametcrs, from four to six inches, the 1ncrease in detonation 

veloc1ty with increas1ng diameter became s~ller, and it remained only 

slight when the d1ameter of the charge was 1ncreased above s1x inches. 

It was assumed that with further 1ncreas1ng d1ameter of charge the deto­

nation veloc1ty would eventually approx1wate the ldeal detonation veloc1ty 

of the mixture, which according to CookS could take place at diameters as 

large as 55 to 65 lnches. Consequently the measured detonat1on vcloc1ties 

of the eight-1nch diameter tests w1th the regular ~~onium n1trate-fuel 

011 mixture, wh1ch appeared to be rather low, had to be considered slightly 

errat1c ow1ng to reasons which at th1s t1me have not been deter.mined. 

It was remarkable that charges w1th the small diameter of 1.5 inches 

could be detonated securely. 

It seemed of interest to f1nd out how the results of these diameter 

.tests would agree w1th the postulate that the detonation velocity ~~uld 

be deter.o1ned by the fraction N of react1on completed within the detonation 

head.24 By means of Cook's emp1rical for.mula this value N was calculated 

for all diameter tests as listed in Table XXI. The N values then were 

plotted against the diameters in Figure 12. As could be seen the in­

crease in the value of N with increasing diameter of charge corresponded 

to the increase in measured detonation velocity. This confirmed Cook'~ 

theory, wh1ch also was based on experimental evidence. 
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TABLE XXI 

Fraction of Co~pleted Reaction N 1n the Tests for the Effect 

of the D1ameter of the Charqe 

D = measured dctonat1on velocity (feet/second) 

n+ = ldeal detonation velocity (feet/second) 

rl = fract1on of completed reaction (= D2fn+2) 

Load1ng density of the charge: 9.900 g/cm3 

Composit1on - \: 95/5 AN/Fuel Oil 

Test Pipe D1ameter D n+ 
Inches Feet/Second Feet/Second 

1.sa 9150 15387 
2 10136 15387 
2 10810 15387 
3 11706 15387 
3 12156 15387 
4 13506 15387 
6 14367 15387 
8 13990 15387 
8 14140 15387 

Comp;>sitlon - 1.: 94/6 RCP/Fue1 011 
!.sa 10439 15650 
2 11321 15650 
3 12975 15650 
3 13328 15650 
4 14667 15650 
6 15400 15650 
8 15483 15650 

aActua1 d1ametcr of the test plpe was 1.5625 inches. 

N 

0.35361 
0.~3393 

0.49356 
0.57877 
0.62412 
0.77045 
0.87181 
0.82666 
0.84448 

0.44492 
0.52328 
0.68736 
0.72527 
0.87832 
0.96830 
0.97877 
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The Effect of the Part1cle Size of the ~n1um N1trate. The 

tests lnvestigating the effect of the partlcle rize of the ammonium 

n1trate 1n the mdxture were tabulated in Table XXII. In some of the 

tests the loadlng density had not been kept at the required value for 

comparative tabulation of 0.850 grams per cubic centimeter. The values 

of the average detonat1on velocity obta1ned in these tests were corrected 

approximately to the dens1ty of 0.850 by apply1ng the curve constructed 

from the results of tests for the effect of the loading density. Once 

again the value N of the fract1on of reaction completed with1n the deto­

nation head was then calculated for all tests and the results were listed 

in Table XXIII. 

In F1gure 13 the detonat1on veloc1ty and the value N were then 

plotted aga1nst the partlcle size. The plott1ng of the regular fertilizer 

grade ammon1um n1trate as -1~14 mesh part1cle size and of the recircu­

lation product ammonium nitrate -20 mesh was arbitrary, but seemed 

JUstifled as these particle sizes pertained to the largest screen 

fractions of those products. It ir admitted that the curves drawn in 

Figure 13 are rather freely conce1ved: a larger number of data would 

be necessary to verify the course of the curves. However, they were 

based on the definite indicat1on of the apparent trend that the fraction 

N and the detonation velocity 1ncrease with 1ncreasing part1cle size. 

Furthe~ore, this would agree with the theory developed concerning the 

relation between part1cle size and detonat1on veloc1ty, a corollary of 

Eyring's grain-burning theory. This theory pointed out that a decrease 

in particle size would bring about a decrease in the length of the 
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TABLE XXII 

Terts for the Effect of the Particle S1ze of the Ammonium Nitrate 

d = loading density of the charge (g/cm3) 

D = detonat1on velocity (feet/second) 

Test pipe diameter: 3 inches 

Composit1on - ": Ammonium llitrate/Fuel Oil 

Test 
No. 

d 
g/cm3 

Part1cle Size 
Mesh 

230 0.850 -12/+14b 
108 0.854 -12/+14b 
111 0.831 -10/+12 
235 0.8ro -10/+12 
113 0.892 -20C 
238 0.850 -20C 
23~ 0.850 -20C 
243 0.850 -20C 
114 0.900 -20C 
Com s1t1on - 1.: 94 6 AJcnonium ll1trate Fuel 011 
142 0.792 -12 +14 
270 0.900 -12/+14b 
236 0.850 -10/+12 
216 0.915 -10/+12 
251 0.850 -14/+16 
255 0.850 -18/+20 
183 0.888 -20C 
348 0.850 -30/+60 

D 
Feet/Second 

11450 
11520a 
122ooa 
11279 
12455a 
12581 
12629 
12908 
13220a 

1128oa 
11560d 
11319 
11455a 
11872 
12300 
12690d 
13430 

aDetonation velocity value approximately corrected to d = 0.850 

~egular fertilizer grade acmonium nitrate (=AN) 

CRecirculation product ammon1um nitrate (=RCP) 
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TABLE XXIII 

Fraction of Completed Reaction N in the Tests for the Effect 

of the Particle Size of the Ammonium Nitrate 

D = measured detonation velocity (feet/second) 
n+ = ideal detonation velocity (feet/second) 
N = fraction of completed reaction (=D2/D+2) 
Loading density of the charge: 0.850 {q/cm3) 
Test pipe diameter: 3 inches 
Composition - ~: 95/5 Ammonium Nitrate/Fuel Oil 

Particle Size 
Mesh 

-10/+12 
-10/+12 
-12/+14b 
-12/+14b 
-20C 
-20C 
-20C 
-20C 
-20C 

D 
Feet/Second 

D+ 
Feet/Second 

122ooa 14764 
11279 14764 
11450 14764 
1152Qd 14764 
12455a 14764 
12581 14764 
12629 14764 
12908 14764 
13220a 14764 

11319 15190 
11455a 15190 
11280d 15190 
11560d 15190 
11872 15190 
12300 15190 
12690a 15190 
13430 15190 

N 

0.68282 
0.58362 
0.60145 
0.60883 
0.71167 
0.72614 
0.73169 
0.76438 
0.81395 

0.55526 
0.56868 
0.55144 
0.57916 
0.61084 
0.65568 
0.69792 
0.78169 

aoetonation velocity value approximately corrected to d = 0.850 
bRegular fertilizer grade ammonium nitrate . (=AN) 
cRecirculation product ammonium nitrate (=RCP) 
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reaction zone. As the length of the detonation head, which is the deto-

nation veloc1ty deter.mining region zone, was stated not to be dependent 

upon the length of the reaction zone but mainly upon the diameter of 

charge which was kept constant in these tests, 1t is logical to conclude 

that with decreasing particle size the end of the reaction zone will 

approach the Chapman-Jouguet plane,which represents the end of the deto­

nation head. That would mean that the fraction N of reaction completed 

within the detonation head will become larger. And this again would 

result in a higher detonat1on veloc1ty according to Cook's formula. Taking 

into account the standard dev1ation of the test results, whlch can be 

considerable, the results of the experiments seem to agree with the 

theory. 

The Effect of Different Reducing Fuels. In Table XXIV the data 

and results were listed of the tests investigat1ng the effect of different 

reducing fuels. The fuels used included No. 2 fuel oil, lampblack oil 

(slurry), tetra dra1ngs (tetra), naphtha, turpentine, and powdered alund­

num, also comb1nations of some two of these fuels. For comparison the 

results of tests with corresponding percentages of the No. 2 fuel oil 

normally used in the ammonium nitrate mdxtures were listed with the 

results of tests with other fuels. 

Test No. 161 which employed a 90/10 ammon1um nitrate-slurry ~xture 

fa1led to yield a detonation of the mdxture. However, this test employed 

the original standard primer consisting of one Whole cartridge of 6~ 

strength dynamdte. Some previous tests with a 90/10 arrmonium nitrate 
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TABLE XXIV 

Tests for the Effect of Different Reducing Fuels 

Test pipe diameter: 3 inches 

Test Compos1tion - 1. Components d D 
No. of Mixture gfcm3 Foot/Second 

107 96/4 AN/fuel oil 0.887 11443 
154 96/2/2 AN/fuel oil/ &:\)tra 0.874 10100 
108 95/5 Arl/fuel oil 0.854 11763 
230 95/5 AN/fuel oil 0.850 11450 
157 95/5 AN/naphtha 0.800 no detonation 
160 95/5 AN/slurry 0.835 10625 
233 95/5 AN/turpentlne 0.850 11457 
142 94/6 All/fuel oil 0.792 10689 
270 94/6 AN/fuel 011 0.900 12012 
281 94/6 ANuc/fuel oil 0.900 11886 
155 94/6 AN/tetra 0.875 SS3S 
227 94/6 Pu'l/turpent ine 0.850 11550 
146 94/3/3 PJ:/fue1 oil/tetra 0.882 11100 
163 94/3/3 AN/fuel oil/slurry 0.839 10878 
143 92/8 AN/fuel oil 0.798 10938 
268 92/8 AN/fuel oil 0.900 11979 
152 92/4/4 Al~/fuel oil/tetra 0.854 11106 
266 90/10 AN/fuel oil 0.900 11581 
159 90/10 AN/naphtha 0.891 no detonation 
161 90/10 AN/slurry 0.812 no detonation 
147 90/5/5 AN/fuel oil/tetra 0.880 11100 
162 90/5/5 AN/fuel oil/alum 0.886 11272 
260 88/12 AN/fuel oil 0.850 11118 
153 88/6/6 AN/fuel oil/tetra 0.903 10894 
164 69/15.5/15.5 AN/alum/water 1.192 9863 
166 66.4/14.9/18.7 AN/alum/water 1.422 no detonation 
165 59.7/13.4/26.9 AN/alum/water no detonation 

Legend: AN = fertilizer grade ammonium nitrate, with 3\ coating 
ANuc = uncoated ammonium nitrate 
slurry = soot oil, containinQ 8.5\ carbon 
tetra = tetra drainings 
alum = aluminum powder 
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fuel oil mdxture using this primer had also been unsuccessful. The 

successful test l1sted (No. 266) employed the new standard primer con-

s1sting of a bundle of !our halves of 6~ strength dynamdte cartridges. 

It could be possible, therefore, that a 90/10 ammonium nitrate-slurry 

mixture would also detonate w1th the use of the new standard pr~er. 

The recorded results in Table XXIV show that the admdxturc of 

other organic fuels than No. 2 fuel oil to ammonium n1trate does not 

result 1n a marked change of the detonation veloclty of such mdxtures. 

In add1tion tl\e detonat1on velocities y1elded by these other ~xtures 

were in general below those of ~cniuc nitrate-fuel oil mixtures. For 

this reason No. 2 fuel oil remained to be considered as the most suitable 

reduc1ng agent for explosive ~on1um nitrate-fuel oil ~xtures. 

A number of tests was carried out to study the performance of 

ammonium nitrate-aluminum slurries. As can be seen only the slurry with 

a water content of 15.5 percent detonated successfully, while slurr1es 

with hlgher water content failed to detonate. This agreed approximately 

with Cook's3 report about the results of experiments with var1ous ammon1um 

nitrate-aluminum-~ter ~xtures. 

The Effect of Different Primers. The data and results investigat-

ing the effect of the prireer employed to initiate the ammonium nitrate­

fuel oil mdxture were l1sted in Table XXV. These tests were carried out 

with a 95/5 mixture of regular ammon1um nitrate and fuel oil in standard 

three-inch dia~eter pipes. The loading density 1n these tests varied 

but did not in general deviate too much from the mean loading density of 
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TABLE XXV 

Tests for the Effect of Different Primers 

Test pipe diameter: 3 inches, Composition - \: 95/5 AN/Fuel Oil 

Test 

No. 

1 
194-C 
106 
108 
133 
134 
136 
140 
175 
189-C 
230 
145 
117 
148 
190-C 
191-C 
188 
186 
178 
149 
192-C 
193 
177 
100 
195-C 
196 
197-C 

98 
127 

Prur.er 

4~ dynamdte, 1 cartr1dge 
4~ dynamite, 1 cartridge 
6~ dynam1te, 1 cartridge 
6~ dynamdte, 1 cartridge 
6~ dynam1te, 1 cartridge 
6~ dynam1te, 1 cartridge 
6~ dynam1te, 1 cartr1dge 
6~ dynam1te, 1 cartr1dge 
6~ dynd~!te, 1 cartridge 
6~ dynam1te, 1 cartridge 
6~ dynam1te, 4 2-cartrldges 
9~ dynamite, 1 cartridge 
400-gr. PC, 1 1'-1ength 
400-gr. PC, 1 1'-1ength 
400-gr. PC, 1 1'-1ength 
400-gr. PC, 1 1'-1ength 
400-gr. PC, 2 6n-1engths 
400-gr. PC, 4 3•-1engths 
400-gr. PC, 37 1'-1engths 
300-gr. PC, 1 !'-length 
300-gr. PC, 1 1'-length 
300-gr. PC, 2 6•-lengths 
300-gr. PC, 40 1'-lengths 
200-gr. PC, 1 1'-1ength 
200-gr. PC, 1 1'-length 
200-gr. PC, 2 6•-1engths 
200-gr. PC, 2 s•-1engths 
150-gr. PC, 1 !'-length 
400-gr. PC, 1 l'-1ength 

+150-gr. PC, 1 1'-length 

Legend: PC = Primacord 
gr. = grains per foot 

d 

g/cm 

0.883 
0.776 
0.898 
0.854 
0.793 
0.821 
0.800 
0.78G 
0.852 
0.782 
0.850 
0.892 
0.825 
0.831 
0.767 
0.768 
0.794 
0.818 
0.872 
0.841 
0.784 
0.817 
0.888 
0.794 
0.775 
0.816 
0.777 
0.787 

0.801 

D 

Foot/Second 

no detonat1on 
no detonation 
11925 
11763 
10125 
10768 
10534 
10725 
11000 
11256 
11450 
11606 
11263 
11419 
11279 
11171 
11064 
11371 
10656 
no detonation 
11278 
11089 
10569 
no detonatio!l 
no detonat1on 
no detonation 
11343 
no detonation 

11042 
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of all tests. The tests tabulated in Table XXV refer to the experiments 

with pr~ers only at one end of the explosive ammonium nitrate mixture 

column. These primers included cartridges of dynamite of different 

strength and short pieces of heavy primacord of differ~nt grain strength. 

In cases Where more than one length of primacord was used the pieces 

were taped together in bundles with friction tape. Tests with. numbers 

containing the letter C refer to confinement tests which were described 

more in detail under the next heading. 

Employ1ng the data and results listed in Table XXV, Fiqure 14 was 

drawn plotting the loading density of the primer tests aga1nst the deto­

nation velocity of these tests. In addit1on to the values of the prtmer 

tests, the values of the loading density tests w1th a 95/5 ammonium 

nitrate-fuel oil mdxture was plotted to obtain the loading density curYe. 

This was done in order to emphasize the assumption that the type of primer 

used does not seriously change the typical detonation velocity of the 

mdxture. As can be seen most of the values plotted are within the limdts 

of nor.mal deviation from the curve, which was considered to show the 

actual relationship between loading density and detonation velocity. The 

normal deviation in these detonation Yelocity tests was considered to 

amount to about five hundred feet per second. No explanation could be 

found at this t~e for the apparently anomolous fact that in two tests 

such comparatively strong pr~ers as bundles of thirty-seYen one-foot 

lengths of 400-grain pr~cord or of forty one-foot lengths of 300-grain 

primacord yielded detonation velocities in the mixtures considerably 

below the normal velocity. 



www.manaraa.com

0 
z 
0 
\) 
uJ 
U) 

~ .., 
0.. ... 
Ill 
w 
lL 

> 
t-

u 
0 
.J 

~ 
z 
Q 
~ z 
0 
~ 
UJ 

0 

FIGURE 14. EFFECT OF THE PAlMER ON THE 

DETONATtON VELOCITY OF A 

qs/5 AMMoNauM NnRAT£- FuELOn. MaxruAE. 

)t Go% OYN. 1 CARTRIDGE 

0 60% DVN. lt•Ya. CAATAIOGE 

& 4-ooGA.PC. 
12.ooo a 3oo GR.PC. +Zoo GA PC. 

if qO% DYN. 

11500 

a • ,o ~ ~ 

' 0 Ai uooo 0 

--
0~0 

10500 

X 

10000 

0.75 080 

' 
0 

0 .85 

LOADING DENSITY, GH PEA CU<M 

0 

~ 4oo GR. PC.. 37•1' 
a 

300GA PC. 
lto•1' 

o.qo 

95 



www.manaraa.com

96 

The tests listed in Table XXVI concerned the use of primer charges 

which extended throughout the whole length of the column of explos~ve 

nuxture. Such a primer charge ~~s prepared by leading a line of 50-grain 

primacord through the whole length of the plpe. To this line one-foot 

long p~eces of higher strength pr1macord were attached with tape, either 

end to end or spaced known distances apart, and the ammonium n~trate­

fuel 011 mdxture was f~lled around this line. Electric blasting caps 

were used as detonators. These tests were perfor.med in order to lnvesti­

gate further the overdrive theory. 

As is apparent the measured detonat1on velocities of these tests 

were rather lr.consistent. It seemed safe to follow the' conclusion of 

Cook,c that the consecutive explos1ons of the heavy pr1w~cord strips 

accounted for the high detonat1on velocitles measured, while the ammonium 

n1trate mixture would detonate at its own speed for short length propagation. 

The latter would account for the low values of detonation velocity occa­

sionally measured (tests 137 and 131). 

The Effect of Confinement. The use of the iron test pipes was of 

advantage 1n th1s investigation because it facllitated convenient handling 

and application of the pin-oscillograph instrumentation, however, the iron 

test pipes resembled only to a limdted degree actual bore hole conditions. . 

In order to approximate more closely those actual cond1tions and also to 

find the answer to some questions which arose from an apparent discrepancy 

between the finding~ of iron test pipe tests and reports from field 

operations, this in the use of heavy primacord as initiating agent, 
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TABLE XXVI 

Tests for the Effect of Different Primers, Continous Cha~es 

Test Pipe diameter: 3 1nches 
Composit1on - ~: 95/5 AN/fuel oil 

Pr1mer d D 

97 

Test 
No. g/cm3 Foot/Second 

137 50-gr. PC 
+400-gr. PC, 

129 50-gr. PC 
+400-gr. PC, 

131 50-gr. PC 
+400-gr. PC, 

122 50-gr. PC 
+300-gr. PC, 

130 50-gr. PC 
+300-gr. PC, 

120 50-gr. PC 
+200-gr. PC, 

121 50-qr. PC 
+150-gr. PC, 

Legend: PC = Pr1.macord 
gr - grain 

end to end 

3' spacing 

3' spac1ng 

1' spacing 

3' spac1ng 

2.5' spacing 

1' spacing 

0.782 H 23800 
L 11450 
A 17813 

0.803 Interpr. Diff. 

0.777 H 19900 
L 12050 
A 15170 

0.829 Interpr. Diff. 

0.794 Interpr. Diff. 

0.824 H 33330 
L 18520 
A 24090 

0.810 H 29880 
L 13300 
A 20232 

H = highest velocity recorded 
L = lowest Yelocity recorded 
A = average detonation velocity, calculated from all velocities 

recorded 
Interpr. Diff. = Interpretation Difficulties with the record 
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several exper1reents with confined test pipes were pcrfor.med. In these 

tests the standard threc-1nch diameter test p1pes were surrounded by a 

mantle of concrete, about three inches thick~ This was achieved by 

placing the iron test pipe in the r.uddle of a ten-inch d1ameter sheet 

reetal pipe which was closed at one end by a botto~ plate. Small iron 

pipes, one-half inch in d1ameter, led from the wall of the test plpe to 

su1tablc holes 1n the sheet metal p1pc, to hold the corks and 1nsulated 

wires of the pin set-up. The space between the outer wall of the test 

p1pe and the 1nner wall of the sheet metal p1pe was then f1lled with 

concrete. The iron test plpe stuck out of the concrete sufficlently to 

per.mit the 1ror cap to be screwed on. The results of these tests were 

tabulated 1n Table XXVII together w1th results of comparative tests 

perforrrcd ~ith pipes without concrete mantle. 

These results dld not prov1de suffic1ent 1nformat1on as to the 

effect of the confinement on the detonation velocity of the mdxture, 

however, the tabulated results emphasized another slgnificant fact, 

which was in agreement with prev1ous findings.l2,15 Th1s was the effect 

of the confinement on the sensitivity, that 1s the ease with wh1ch the 

explosive mixture can be 1nitiated. In three instances confined charges 

detonated where comparat1ve unconfined charges, that is, charges in iron 

test plpes, fa1lcd to y1eld a detonat1on (tests 149 and 192-C, 196 and 197-C, 

109 and 199-C). It was known from the hydrodynamlc theory that an ex­

pansion of the explosion products before the exploslve reaction is complete 

and the resulting pressure drop beh1nd the detonation front, the so-called 

rarefaction, strongly influence the rate of detonation of an expl~sive. 
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TABLE XXVII 

Tests for the Effect of Conf~nement 

Test plpe diameter: 3 inches 

Composition - ~: 95/5 AN/fuel o1l 

Test Primer d D 
No. g/cm3 Foot/Second 

140 6~ dynamite, 1 cartridge 0.780 10725 
189-C 6~ dynanute, 1 cartr~dge 0.782 11256 
117 400-gr. PC, 1 1'-1ength 0.825 11263 
190-C 400-gr. PC, 1 1'-lenqth 0.767 11279 
191-C 400-gr. PC, 1 l'-1ength 0.768 11171 
149 300-gr. PC, 1 1'-length 0.841 no detonat~on 
192-C 300-gr. PC, 1 1'-lcngth 0.784 11278 
196 200-gr. PC, 2 6H-1engths 0.816 no detonation 
197-C 200-gr. PC, 2 6,.- lengths 0.777 11343 

1 401. dynanu te, 1 cartridge 0.894 no detonation 
194-C 4 01. dynamite, 1 cartridge 0.776 no detonation 
100 200-gr. PC, 1 !'-length 0.794 no detonat1on 
195-C 200-gr. PC, 1 1'-length o:;.775 no detonation 
Compos~tion - ~: 90/10 AN/fuel oil 
109 6~ dyn~te, 1 cartr~dge 0.871 no detonat1on 
199-C 6~ dynamite, 1 cartridge 0.806 10725 
266 6~ dyn~te, 4 ~-cartridges 0.900 11581 
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Applied to the prl~er, the rarefact1on might decrease the efficacy of 

the pr1mer JUst enough to cause it to fail to init1ate the ammon1um 

n1trate-fucl oil mdxture. Th1s could apply to the 95/5 amb.onium nitrate­

fuel oil ndxtures employ~ng 300-grain and 200-grain primacord as primer, 

and also to the 90/10 ammonium nitrate-fuel o1l mdxtures which were 

comparat1vely less sensitive due to their h1gh negative oxygen balance, 

employing 6~ strength dynamite pr1mers. It seemed possible, therefore, 

as concluded from the results of these tests, that the stronger conflne­

ment delayed the early expansion of the cxplos1ve products long enough 

to conserve enough pressure and heat to fac1l1tate the complete initiation 

of the a~on1um n1trate-fuel oil ~xtures. Following thls l1ne of thought 

1t also m1ght be assumed that stronger conf1nement would 1ncreasc the 

detonat1on veloc1ty of the m1xtures, wh1ch should be subJect to further 

1nvest1gation. 
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CONCLUSIONS 

An approximately oxygen balanced m1xture of ammonium nitrate and 

fuel oil, that is, a ttdxture containing ninety-four to n1nety-f1ve percent 

ammonium n1trate and six to f1ve percent fuel o1l, seemed to provide the 

highest detonation velocity and consequently the optimum blast1ng effect. 

An increase in the loading density of an ~onium nitrate-fuel 

oil mixture was found to decrease its sensitivity but to 1ncrease its 

detonat1on veloc1ty and energy y1eld. 

Approximately oxygen balanced ammon1um n1trate-fuel oil mdxtures 

could be detonated successfully in charges w1th diameters as small as 

two ln~nes, providing the minimum confinement of iron test pipes. The 

detonation velocity of the mixtures was strongly influenced by the diam­

eter range, that is, diameters between 1.5 and 4 inches. In this range 

a small increase in diameter would result in a marked 1ncrease 1n deto­

nation velocity and v1ce versa. 

A decrease 1n average particle s1ze of the ammon1um nitrate in 

t~e ammonium nitrate-fuel oil mdxtures resulted 1n a marked increase of 

the detonation velocity of these mdxtures. 

Of the different organic reducing fuels tested as components of 

ammonium nitrate-reduc1ng fuel mixtures, the No. 2 fuel oil was found to 

provide the best results in terms of better sensitiv1ty and higher deto­

nation velocity of the mdxture. 

After in1t1ation was secured the strength of the primer seemed to 

have no pronounced effect on the detonation velocity of the ammonium 

nitrate-fuel oil mixtures. The postulate of the overdrive theory could 

not be substantiated. 
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Stronger conf1nemcnt of the charge was found to increase the 

scnsit1vity of ammoniuc n1trate-fuel oil mdxtures withln the range of 

confinement and densities tested. 

1~ 
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